The 7d unconfined compressive strength tests of alkali-activated tungsten tailings and the microscopic characteristics tests of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were conducted to investigate the effect of alkali-solid ratio on the properties of alkali-activated tungsten tailings. The test results indicate that the unconfined compressive strength of alkali-activated tungsten tailings increased with the alkali-solid ratio. However, the strength decreases slightly when the alkali-solid ratio is 12%. The microstructures of the gels generated in the alkali-activated tungsten tailings are affected by the alkali-solid ratio. The details are as follows: the microstructure is honeycomb in low alkali-solid ratio (7%, 8% and 10%), with N-A-S-H as its primary form, and flocculation in high alkali-solid ratio (14% and 15%), mainly in the form of C-A-S-H. When the alkali-solid ratio is at the medium level (12%), the microstructure is a small round bead, and the N-A-S-H is equivalent to the C-A-S-H. The more C-A-S-H content, the greater the strength. This study can provide a scientific basis and technical reference for the resource utilization of tungsten tailings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017597PMC
http://dx.doi.org/10.1007/s11356-022-24643-9DOI Listing

Publication Analysis

Top Keywords

alkali-solid ratio
28
tungsten tailings
24
alkali-activated tungsten
16
unconfined compressive
8
compressive strength
8
alkali-solid
7
ratio
7
tungsten
6
tailings
6
alkali concentration
4

Similar Publications

Rapid humification of cotton stalk catalyzed by coal fly ash and its excellent cadmium passivation performance.

Environ Sci Pollut Res Int

August 2024

School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.

Due to industrialization, soil heavy metal pollution is a growing concern, with humic substances (HS) playing a pivotal role in soil passivation. To address the long duration of the compost humification problem, coal fly ash (CFA) in situ catalyzes the rapid pyrolysis of the cotton stalk (CS) to produce HS to address Cd passivation. Results indicate that the highest yield of humic acid (HA) (8.

View Article and Find Full Text PDF

Chromite ore processing residue (COPR) is a typical hazardous waste, which contains Cr(vi) and poses a great threat to the ecological environment and human health. In this study, solidification/stabilization (S/S) of COPR was carried out by using blast furnace slag (BFS) and fly ash (FA) to prepare alkali-activated cementitious materials (AACM). The influence of different factors (water glass modulus, liquid-solid ratio, alkali-solid content and curing temperature) on compressive strength was investigated by single-factor experiment.

View Article and Find Full Text PDF

The 7d unconfined compressive strength tests of alkali-activated tungsten tailings and the microscopic characteristics tests of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were conducted to investigate the effect of alkali-solid ratio on the properties of alkali-activated tungsten tailings. The test results indicate that the unconfined compressive strength of alkali-activated tungsten tailings increased with the alkali-solid ratio. However, the strength decreases slightly when the alkali-solid ratio is 12%.

View Article and Find Full Text PDF

The Utilization of Alkali-Activated Lead-Zinc Smelting Slag for Chromite Ore Processing Residue Solidification/Stabilization.

Int J Environ Res Public Health

September 2021

State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.

Lead-zinc smelting slag (LZSS) is regarded as a hazardous waste containing heavy metals that poses a significant threat to the environment. LZSS is rich in aluminosilicate, which has the potential to prepare alkali-activated materials and solidify hazardous waste, realizing hazardous waste cotreatment. In this study, the experiment included two parts; i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!