The rate of RNA polymerase II (RNAPII) transcriptional elongation plays a critical role in mRNA biogenesis, from transcription initiation to alternative splicing. As RNAPII moves along the DNA, it must read the DNA sequences wrapped up as chromatin. Thus, the structure of chromatin impedes the movement and speed at which RNAPII moves, presenting a crucial regulation to gene expression. Therefore, factors that bind and regulate the structure of chromatin will impact the rate of RNAPII elongation. We previously showed that PARP1 (poly-ADP-ribose polymerase 1) is one of such factors that bind and alter chromatin dynamics. We also showed that its alteration of chromatin structure modulates RNAPII processivity during transcriptional elongation. Here, we aim to understand how PARP1 alters RNAPII elongation kinetics genome wide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815798 | PMC |
http://dx.doi.org/10.1007/978-1-0716-2891-1_18 | DOI Listing |
Nat Struct Mol Biol
January 2025
Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever.
View Article and Find Full Text PDFJ Biotechnol
January 2025
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Efficient methods and universal DNA elements are eagerly required for the expression of proteins and the production of target chemicals in synthetic biology and metabolic engineering. This paper develops a customized-design approach by utilizing the host-independent T7 expression system (HITES), which facilitates the rational design and rapid construction of T7 expression systems. Firstly, the EL (Upper-limit value of initial enzyme activity) value is discovered to play a pivotal factor in the successful construction of the T7 expression system, different host strains exhibit varying EL values, and this study presents a method to measure the EL values.
View Article and Find Full Text PDFPlacenta
December 2024
Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia.
Introduction: Children with wheeze and asthma present with airway epithelial vulnerabilities, such as impaired responses to viral infection. It is postulated that the in utero environment may contribute to the development of airway epithelial vulnerabilities. The aims of the study were to establish whether the receptors for rhinovirus (RV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are expressed in the amniotic membrane and whether the pattern of expression is similar to newborn nasal epithelium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!