AI Article Synopsis

  • Invasive infections from filamentous fungi, particularly Aspergillus terreus, have risen due to weakened immune responses, and this fungus shows resistance to common treatments like amphotericin B, leading to higher mortality rates.
  • The study identifies a clinical strain of A. terreus and examines its ability to form biofilms using advanced microbiological techniques, revealing important stages of biofilm development through SEM-HR (Scanning Electron Microscopy in High Resolution).
  • Additionally, the research characterizes the biofilm's structure and chemical composition, identifying key components like proteins, carbohydrates, nucleic acids, and notably, lipid components, marking the first report of lipid-type biofilms in this fungal species.

Article Abstract

Invasive infections caused by filamentous fungi have increased considerably due to the alteration of the host's immune response. Aspergillus terreus is considered an emerging pathogen and has shown resistance to amphotericin B treatment, resulting in high mortality. The development of fungal biofilm is a virulence factor, and it has been described in some cases of invasive aspergillosis. In addition, although the general composition of fungal biofilms is known, findings related to biofilms of a lipid nature are rarely reported. In this study, we present the identification of a clinical strain of A. terreus by microbiological and molecular tools, also its in vitro biofilm development capacity: (i) Biofilm formation was quantified by Crystal Violet and reduction of tetrazolium salts assays, and simultaneously the stages of biofilm development were described by Scanning Electron Microscopy in High Resolution (SEM-HR). (ii) Characterization of the organizational structure of the biofilm was performed by SEM-HR. The hyphal networks developed on the surface, the abundant air channels created between the ECM (extracellular matrix) and the hyphae fused in anastomosis were described. Also, the presence of microhyphae is reported. (iii) The chemical composition of the ECM was analyzed by SEM-HR and CLSM (Confocal Laser Scanning Microscopy). Proteins, carbohydrates, nucleic acids and a relevant presence of lipid components were identified. Some structures of apparent waxy appearance were highlighted by SEM-HR and backscatter-electron diffraction, for which CLSM was previously performed. To our knowledge, this work is the first description of a lipid-type biofilm in filamentous fungi, specifically of the species A. terreus from a clinical isolate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11046-022-00692-zDOI Listing

Publication Analysis

Top Keywords

aspergillus terreus
8
filamentous fungi
8
biofilm development
8
biofilm
6
lipid-like biofilm
4
biofilm clinical
4
clinical brain
4
brain isolate
4
isolate aspergillus
4
terreus
4

Similar Publications

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Bamboo vinegar powder: Unveiling its antioxidant and antifungal efficacy through bioactive compound analysis and mechanistic insights.

Food Chem

January 2025

Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, Fujian, China; Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, Fujian, China. Electronic address:

Bamboo vinegar has been applied in livestock and fisheries as food additives. In this study, the antioxidant and antifungal properties of bamboo vinegar powder extract (BVPE) and its bioactive compounds were explored. BVPE exhibited significant free radical scavenging activity against DPPH and ABTS radicals, along with notable antifungal effects against Aspergillus terreus and Paecilomyces variotii.

View Article and Find Full Text PDF

The L-asparaginase is commercial enzyme used as chemotherapeutic agent in cancer treatment and food processing agent in backed and fried food industries. In the present research work, the artificial intelligence and machine learning techniques were employed for modeling and optimization of fermentation process conditions for enhanced production of L-asparaginase by submerged fermentation of . The experimental L-asparaginase activity obtained using central composite experiment design was used for optimization.

View Article and Find Full Text PDF

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF

Undescribed cytotoxic butenolides; asperterreunolides A-E, isolated from endophytic fungus Aspergillus terreus derived from Artemisia arborescens L. supported with in silico study.

Phytochemistry

December 2024

National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA. Electronic address:

Article Synopsis
  • The ethyl acetate extract from the endophytic fungus Aspergillus terreus found in Artemisia arborescens L. led to the discovery of five new compounds, asperterreunolides A-E, along with a known metabolite, butyrolactone IV.
  • Using advanced spectroscopic techniques, the researchers determined the structures and the absolute configurations of these metabolites.
  • All isolated compounds exhibited significant cytotoxic effects against certain cancer cell lines, and molecular docking studies suggested their potential mechanism of action as inhibitors of type IIA topoisomerase.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!