There is mainly a lack of boron (B) in soils with low amounts of organic matter and in acidic and sandy soils. This is especially true in irrigated land or humid regions, where leaching can occur. The results from studying the amount of available B will reveal the status of B in the soil of a specific plot of land. The experimentation was performed as a controlled study using leaching columns. A container was placed at the end of the columns to collect the infiltrated water. Three treatments were performed by applying different amounts of biosolids (T: 40,000 kg ha, T: 80,000 kg ha, T: 120,000 kg ha), as well as a blank test or control treatment (T). We conclude that the mobility of B in soil was generally low despite the addition of organic matter and humidity to the soil. This is an indication that there is no clear risk of aquifers being contaminated with B or plants being impacted by toxicity due to this micronutrient.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-022-01448-wDOI Listing

Publication Analysis

Top Keywords

leaching columns
8
organic matter
8
dynamics boron
4
boron amending
4
amending agricultural
4
soil
4
agricultural soil
4
soil mediterranean
4
mediterranean basin
4
basin biosolids
4

Similar Publications

Dolomite dissolution, pH neutralization, and potentially toxic element immobilization in stormwater bioretention beds.

Sci Total Environ

January 2025

Temple University, Department of Civil and Environmental Engineering, 1947 North 12(th) Street, Philadelphia, PA 19122, United States. Electronic address:

The importance of pH in stormwater bioretention beds cannot be overstated since it impacts plant and microbial populations and removal of potentially toxic elements (PTEs) from stormwater runoff. This study investigated the effects of dolomite amendment on pH neutralization and subsequent PTE immobilization in bioretention media. To assess dolomite dissolution, pH neutralization, and PTE immobilization, engineered bioretention media was amended with different dolomite ratios and samples of dolomite-amended media were collected from two bioretention beds, one and two months after installation.

View Article and Find Full Text PDF

Transport mechanisms of the anthropogenic contaminant sulfamethoxazole in volcanic ash soils at equilibrium pH evaluated using the HYDRUS-1D model.

J Hazard Mater

January 2025

Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Instituto para el Desarrollo Sustentable, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile. Electronic address:

The volcanic soils in Chile, where a significant portion of agricultural activities take place, are impacted by the presence of veterinary drugs, including sulfamethoxazole (SMX). The study examines how different soil types influence the movement and retention of sulfamethoxazole (SMX) across four regions of Chile, focusing on conditions at a neutral pH of 7.0.

View Article and Find Full Text PDF

Recovery of Nd and Dy from E-Waste Using Adsorbents from Spent Tyre Rubbers: Batch and Column Dynamic Assays.

Molecules

December 2024

LAQV/REQUIMTE, Associated Laboratory for Green Chemistry, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

This paper investigates the use of spent tyre rubber as a precursor for synthesising adsorbents to recover rare earth elements. Through pyrolysis and CO activation, tyre rubber is converted into porous carbonaceous materials with surface properties suited for rare earth element adsorption. The study also examines the efficiency of leaching rare earth elements from NdFeB magnets using optimised acid leaching methods, providing insights into recovery processes.

View Article and Find Full Text PDF

As a transitional zone where rivers meet the sea, estuaries are influenced by river transport and ocean tides, resulting in complex variations in parameters such as organic matter content, pH, and sediment salinity. This paper primarily explores the vertical migration patterns of polychlorinated biphenyls (PCBs) under complex conditions, focusing on the soil sediments in the Dagu River estuary area. We designed an indoor soil column leaching experiment to investigate how soil organic matter content, pH, and salinity affect the vertical migration of PCBs in soil.

View Article and Find Full Text PDF

Mine tailing deposits pose a global problem, as they may contain metal contaminants in various geochemical forms and are likely to be leached from the surface into the underlying groundwater, which can result in health and/or environmental risks. Unfortunately, little is currently known regarding the water flow and mass balance related to leaching in the vadose zone as these factors are still difficult to measure at the field scale. A pilot-scale experiment was run in a 1 m instrumented column for 6 months to address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!