In this work, the authors present instantaneous local dose rates from particles of plutonium-239 oxide ( 239 PuO) embedded in various regions of the respiratory tract. For comparison, a small number of simulations were performed in a representative region of the respiratory tract with other chemical compounds including pure metallic 239 Pu, 239 PuO 2 , 239 PuO 3 , 239 Pu 2 O 3 , and 239 Pu(NO 3 ) 4 . A small number of simulations were also performed with 238 PuO, weapons grade Pu, and Pu from a typical radioisotope thermoelectric generator (RTG) source for the same reason. The self-shielding effect is minor for very small particles but gradually becomes more significant as the particle size increases. For particles that are 0.1 μm and larger (excluding Pu nitrate), the calculated dose rate within several microns of the particle may be sufficient to damage lung cells, but the implications of damage to such a small volume of tissue are unclear. However, it is reasonable to assume that clinical effects will be observed if a large enough volume of tissue is damaged, as might happen when large numbers of particles are inhaled. The instantaneous dose rate around a particle may be predictive of deterministic effects, scar tissue formation, and biokinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HP.0000000000001627 | DOI Listing |
Health Phys
February 2023
Los Alamos National Laboratory, Radiation Protection Division, PO Box 1663, Los Alamos, NM 87545.
In this work, the authors present instantaneous local dose rates from particles of plutonium-239 oxide ( 239 PuO) embedded in various regions of the respiratory tract. For comparison, a small number of simulations were performed in a representative region of the respiratory tract with other chemical compounds including pure metallic 239 Pu, 239 PuO 2 , 239 PuO 3 , 239 Pu 2 O 3 , and 239 Pu(NO 3 ) 4 . A small number of simulations were also performed with 238 PuO, weapons grade Pu, and Pu from a typical radioisotope thermoelectric generator (RTG) source for the same reason.
View Article and Find Full Text PDFRadiat Res
November 2012
Washington State University-Tri-Cities, Richland, Washington, USA.
Seven groups of 8-24 Beagle dogs, exposed to (239)PuO(2) aerosols by inhalation [mean initial lung depositions (ILD) of 0.0, 0.14, 0.
View Article and Find Full Text PDFScience
May 2012
Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
In principle, the spin-½ plutonium-239 ((239)Pu) nucleus should be active in nuclear magnetic resonance spectroscopy. However, its signal has eluded detection for the past 50 years. Here, we report observation of a (239)Pu resonance from a solid sample of plutonium dioxide (PuO(2)) subjected to a wide scan of external magnetic field values (3 to 8 tesla) at a temperature of 4 kelvin.
View Article and Find Full Text PDFRadiat Res
December 2011
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
Studies of health effects in animals after exposure to internally deposited radionuclides were intended to supplement observational studies in humans. Both nuclear workers and Beagle dogs have exhibited plutonium-associated lung fibrosis; however, the dogs' smaller gene pool may limit the applicability of findings to humans. Data on Beagles that inhaled either plutonium-238 dioxide ((238)PuO(2)) or plutonium-239 dioxide ((239)PuO(2)) were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!