The gut microbiota plays an essential role in the regulation of the immune system and the etiology of human autoimmune diseases. However, a holistic understanding of the gut bacteriome, mycobiome, and virome in patients with osteoarthritis (OA) remains lacking. Here, we explored the gut microbiotas of 44 OA patients and 46 healthy volunteers via deep whole-metagenome shotgun sequencing of their fecal samples. The gut bacteriome and mycobiome were analyzed using a reference-based strategy. Gut viruses were identified from the metagenomic assembled contigs, and the gut virome was profiled based on 6,567 nonredundant viral operational taxonomic units (vOTUs). We revealed that the gut microbiome (including bacteriome, mycobiome, and virome) of OA patients is fundamentally altered, characterized by a panel of 279 differentially abundant bacterial species, 10 fungal species, and 627 vOTUs. The representative OA-enriched bacteria included Anaerostipes hadrus (GENOME147149), sp900313215 (GENOME08259), Eubacterium_E hallii (GENOME000299), and A (GENOME001004), while Bacteroides plebeius A (GENOME239725), Roseburia inulinivorans (GENOME 001770), sp900343095 (GENOME075103), Phascolarctobacterium faecium (GENOME233517), and several members of and were depleted in OA patients. Fungi such as Debaryomyces fabryi (GenBank accession no. GCA_003708665), Candida parapsilosis (GCA_000182765), and Apophysomyces trapeziformis (GCA_000696975) were enriched in the OA gut microbiota, and Malassezia restricta (GCA_003290485), Aspergillus fumigatus (GCA_003069565), Mucor circinelloides (GCA_010203745) were depleted. The OA-depleted viruses spanned (95 vOTUs), (70 vOTUs), and (5 vOTUs), while 30 vOTUs were enriched in OA patients. Functional analysis of the gut bacteriome and virome also uncovered their functional signatures in relation to OA. Moreover, we demonstrated that the OA-associated gut bacterial and viral signatures are tightly interconnected, suggesting that they may impact disease together. Finally, we showed that the multikingdom signatures are effective in discriminating the OA patients from healthy controls, suggesting the potential of gut microbiota for the prediction of OA and related diseases. Our results delineated the fecal bacteriome, mycobiome, and virome landscapes of the OA microbiota and provided biomarkers that will aid in future mechanistic and clinical intervention studies. The gut microbiome of OA patients was completely altered compared to that in healthy individuals, including 279 differentially abundant bacterial species, 10 fungal species and 627 viral operational taxonomic units (vOTUs). Functional analysis of the gut bacteriome and virome also revealed their functional signatures in relation to OA. We found that OA-associated gut bacterial and viral signatures were tightly interconnected, indicating that they may affect the disease together. The OA patients can be discriminated effectively from healthy controls using the multikingdom signatures, suggesting the potential of gut microbiota for the prediction of OA and related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927108 | PMC |
http://dx.doi.org/10.1128/spectrum.01711-22 | DOI Listing |
Int J Mol Sci
December 2024
Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as and , were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as and , increased in abundance.
View Article and Find Full Text PDFSci Rep
December 2024
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria.
The early microbial colonization of the porcine gut is an important priming factor for gut and immune development. Nevertheless, little is known about the composition of microbes that translocate into the ileo-cecal lymph nodes (ICLN) in the neonatal phase. This study aimed to characterize age- and nutrition-related changes in the metabolically active bacterial and fungal composition of the ICLN in suckling and newly weaned piglets.
View Article and Find Full Text PDFBackground: Infants exposed to HIV but uninfected have altered immune profiles which include heightened systemic inflammation. The mechanism(s) underlying this phenomenon is unknown. Here, we investigated differences in neonatal gut bacterial and viral microbiome and associations with inflammatory biomarkers in plasma.
View Article and Find Full Text PDFRev Argent Microbiol
December 2024
Unidad Académica Multidisciplinaria Reynosa Aztlán - Universidad Autónoma de Tamaulipas, Reynosa, Mexico. Electronic address:
Human breast milk (HBM) is a vital source of macronutrients and micronutrients that are crucial for an infant's development. Recent studies have shown that HBM contains diverse microorganisms, including bacteria, viruses, protozoa, and anaerobic fungi. Additionally, novel research has revealed that individuals with metabolic disorders, such as diabetes mellitus, are prone to dysbiosis in their gut microbiome.
View Article and Find Full Text PDFPeerJ
December 2024
Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States.
Background: Pepper from species is a well-established spice with a rich history of culinary use. Some observations have linked its consumption to gastrointestinal discomfort and alterations in stool patterns while it is considered beneficial in some cultures. However, there is lack of information on the direct effect of pepper consumption on human gut microbiota, we conducted dietary intervention studies to assess the impact of pepper on gut bacteriome composition in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!