A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models. Although mechanistic models based on biophysical ecology have a long history of development and application, their use in global change biology remains limited despite their enormous promise and increasingly accessible software. We contend that greater understanding and training in the theory and methods of biophysical ecology is vital to expand their application. Our review shows how biophysical models can be implemented to understand and predict climate change impacts on species' behavior, phenology, survival, distribution, and abundance. It also illustrates the types of outputs that can be generated, and the data inputs required for different implementations. Examples range from simple calculations of body temperature at a particular site and time, to more complex analyses of species' distribution limits based on projected energy and water balances, accounting for behavior and phenology. We outline challenges that currently limit the widespread application of biophysical models relating to data availability, training, and the lack of common software ecosystems. We also discuss progress and future developments that could allow these models to be applied to many species across large spatial extents and timeframes. Finally, we highlight how biophysical models are uniquely suited to solve global change biology problems that involve predicting and interpreting responses to environmental variability and extremes, multiple or shifting constraints, and novel abiotic or biotic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16557 | DOI Listing |
Geroscience
January 2025
Dept. of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary.
Age-related cognitive impairment and dementia pose a significant global health, social, and economic challenge. While Alzheimer's disease (AD) has historically been viewed as the leading cause of dementia, recent evidence reveals the considerable impact of vascular cognitive impairment and dementia (VCID), which now accounts for nearly half of all dementia cases. The Mediterranean diet-characterized by high consumption of fruits, vegetables, whole grains, fish, and olive oil-has been widely recognized for its cardiovascular benefits and may also reduce the risk of cognitive decline and dementia.
View Article and Find Full Text PDFGenes Dev
December 2024
Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;
The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.
View Article and Find Full Text PDFMol Ther
January 2025
Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy. Electronic address:
Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.
View Article and Find Full Text PDFJ Clin Med
December 2024
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland.
: As Repeated Low-Level Red Light (RLRL) therapy is becoming increasingly prevalent in clinical practice, mainly in the Far East, largely due to its child-friendly nature and the feasibility of home use, this study aims to conduct a systematic review and meta-analysis to evaluate the efficacy of RLRL therapy in managing childhood myopia, specifically in relation to axial length (AL) and spherical equivalent refraction (SER), across a larger group of children aged from 6 to 16 years. : A systematic literature search was performed using PubMed, Scopus, and Web of Science to access relevant databases and to locate outcome studies. Eligibility criteria included publication type, participant characteristics, and outcomes report.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!