Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chemical synthesis of insulin superfamily proteins (ISPs) has recently been widely studied to develop next-generation drugs. Separate synthesis of multiple peptide fragments and tedious chain-to-chain folding are usually encountered in these studies, limiting accessibility to ISP derivatives. Here we report the finding that insulin superfamily proteins (e.g. H2 relaxin, insulin itself, and H3 relaxin) incorporating a pre-made diaminodiacid bridge at A-B chain terminal disulfide can be easily and rapidly synthesized by a single-shot automated solid-phase synthesis and expedient one-step folding. Our new H2 relaxin analogues exhibit almost identical structures and activities when compared to their natural counterparts. This new synthetic strategy will expediate production of new ISP analogues for pharmaceutical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202216365 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!