Target of rapamycin (TOR) functions as a central sensory hub linking a wide range of external stimuli to gene expression. The mechanisms underlying stimulus-specific transcriptional reprogramming by TOR remain elusive. Here, we describe an in silico analysis in Arabidopsis demonstrating that TOR-repressed genes are associated with either bistable or silent chromatin states. Both states regulated by the TOR signaling pathway are associated with a high level of histone H3K27 trimethylation (H3K27me3) deposited by CURLY LEAF in a specific context with LIKE HETEROCHROMATIN PROTEIN1. The combination of the two epigenetic histone modifications H3K4me3 and H3K27me3 implicates a bistable feature that alternates between an 'on' and an 'off' state, allowing rapid transcriptional changes upon external stimuli. The chromatin remodeler SWI2/SNF2 ATPase BRAHMA activates TOR-repressed genes only at bistable chromatin domains to rapidly induce biotic stress responses. Here, we demonstrate both in silico and in vivo that TOR represses transcriptional stress responses through global maintenance of H3K27me3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erac486 | DOI Listing |
BMC Psychol
January 2025
Doud Research Group, Khartoum, Sudan.
Introduction: Mental health is crucial for overcoming obstacles, completing tasks, and contributing to society. Mental, social, and cognitive healths are included. In demanding fields like medicine, academic pressure can cause exhaustion, poor performance, and behavioral changes.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.
View Article and Find Full Text PDFBMC Genomics
January 2025
Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.
Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.
Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.
Plant Mol Biol
January 2025
College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!