Acid hydrogels comprising polymer networks are promising soft electrolytes whose proton conductivities are most often regulated by acid content. Herein, promotion of conductivity by solely regulating polymer morphology has been demonstrated for acid hydrogels with identical acid content. Polymerization of acrylamide at different temperatures in the same aqueous solution, which is a lyotropic liquid crystal (LLC) of 4-(1-ethyldecyl)benzenesulfonic acid (EDBSA) exhibiting a phase transition at 30 °C, affords acid hydrogels comprising ordered and random polymer networks. The ordered polymer network templated by the lamellar liquid crystal at 15 °C possesses more interconnected and extended pores than that obtained in the isotropic solution at 45 °C. Electrochemical characterization shows that the ordered network affords 48% higher proton conductivity than the random network for hydrogels holding the EDBSA LLC. This higher conductivity is ascribed to more numerous long-range transport pathways formed in larger pores and fewer barriers in the network for protons to pass through. Enhanced conductivities are also obtained from the ordered polymer network for hydrogels comprising micellar EDBSA solution and HSO solution, albeit to lesser degrees. These results shed light on the dependence of electrochemical performance on the polymer morphology of hydrogels and offer a strategy to enhance the conductivity of hydrogels without changing their polymer fraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2sm01282k | DOI Listing |
ACS Nano
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
January 2025
Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China.
Objective: To summarize the research progress of bioactive scaffolds in the repair and regeneration of osteoporotic bone defects.
Methods: Recent literature on bioactive scaffolds for the repair of osteoporotic bone defects was reviewed to summarize various types of bioactive scaffolds and their associated repair methods.
Results: The application of bioactive scaffolds provides a new idea for the repair and regeneration of osteoporotic bone defects.
Int J Biol Macromol
January 2025
Department of Breast Surgery, The Cancer Hospital of China Medical University, China; Department of Breast Surgery, The Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, China. Electronic address:
The pervasive global health concern of breast cancer necessitates the development of innovative therapeutic interventions to enhance efficacy and mitigate adverse effects. Chitosan and hyaluronic acid, recognized for their biocompatibility and biodegradability, present compelling options for novel drug delivery systems and therapeutic platforms in the context of breast cancer management. This discourse will delineate the distinctive attributes of chitosan and hyaluronic acid, encompassing their inherent anticancer properties, targeting capabilities, and suitability for chemical modifications.
View Article and Find Full Text PDFBiomater Adv
January 2025
Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China.
Excessive oxidative stress and persistent inflammation are key factors contributing to the formation of diabetic chronic wounds. Delivering antioxidants through a microenvironment-responsive hydrogel system can effectively enhance wound healing and tissue regeneration. In this study, we developed a novel pH- and glucose-responsive hydrogel using Schiff base reaction and phenyl borate group for intelligent antioxidant release.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China. Electronic address:
The excessive extracellular matrix (ECM) in solid tumors significantly inhibits the deep penetration and homogeneous distribution of nanodrugs, which greatly reduces the therapeutic efficacy. In the present work, an injectable polyelectrolyte hydrogel (CD@IPH) containing collagenase and doxorubicin-loaded polyacrylic acid@polyaniline nanoparticles (DOX@NP) were developed for improved photothermal and chemotherapy. The collagenase is released quickly from the polyelectrolyte hydrogel in the first 12 h, effectively degrading ECM and enhancing the deep penetration and evenly distribution of DOX@NP in tumor tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!