When using microbiologically induced calcium carbonate precipitation (MICP) to produce calcium carbonate crystals in the cavities between mineral particles to consolidate them, the inhomogeneous distribution of the precipitated calcium carbonate poses a problem for the production of construction materials with consistent parameters. Various approaches have been investigated in the literature to increase the homogeneity of consolidated samples. One approach can be the targeted application of ureolytic organisms by 3D printing. However, to date, this possibility has been little explored in the literature. In this study, the potential to use MICP to print calcium carbonate layers on mineral particles will be investigated. For this purpose, a dispensing unit was modified to apply both a suspension of and a calcination solution containing urea and calcium chloride onto quartz sand. The study showed that after passing through the nozzle, preserved consistent cell vitality and therefore its potential of MICP. Applying cell suspension and calcination solution through a printing nozzle resulted in a layer of calcium carbonate crystals on quartz sand. This observation demonstrated the proof of concept of printing calcium carbonate by MICP through the nozzle of a dispensing unit. Furthermore, it was shown that cell suspensions of can be stored at 4°C for a period of 17 days while maintaining its optical density, urease activity and cell vitality and therefore the potential for MICP. This initial concept could be extended in further research to printing three-dimensional (3D) objects to solve the problem of homogeneity in consolidated mineral particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731594PMC
http://dx.doi.org/10.1002/elsc.202100074DOI Listing

Publication Analysis

Top Keywords

calcium carbonate
28
mineral particles
12
potential micp
12
calcium
8
layer calcium
8
carbonate crystals
8
homogeneity consolidated
8
dispensing unit
8
suspension calcination
8
calcination solution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!