Foliar nutrient resorption (NuR) plays a key role in ecosystem functioning and plant nutrient economy. Most of this recycling occurs during the senescence of leaves and is actively addressed by cells. Here, we discuss the importance of cell biochemistry, physiology, and subcellular anatomy to condition the outcome of NuR at the cellular level and to explain the existence of limits to NuR. Nutrients are transferred from the leaf in simple metabolites that can be loaded into the phloem. Proteolysis is the main mechanism for mobilization of N, whereas P mobilization requires the involvement of different catabolic pathways, making the dynamics of P in leaves more variable than those of N before, during, and after foliar senescence. The biochemistry and fate of organelles during senescence impose constraints that limit NuR. The efficiency of NuR decreases, especially in evergreen species, as soil fertility increases, which is attributed to the relative costs of nutrient acquisition from soil decreasing with increasing soil nutrient availability, while the energetic costs of NuR from senescing leaves remain constant. NuR is genetically determined, with substantial interspecific variability, and is environmentally regulated in space and time, with nutrient availability being a key driver of intraspecific variability in NuR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030369 | PMC |
http://dx.doi.org/10.1016/j.xplc.2022.100503 | DOI Listing |
Nat Commun
January 2025
The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China.
Precipitation is an important factor influencing the date of foliar senescence, which in turn affects carbon uptake of terrestrial ecosystems. However, the temporal patterns of precipitation frequency and its impact on foliar senescence date remain largely unknown. Using both long-term carbon flux data and satellite observations across the Northern Hemisphere, we show that, after excluding impacts from of temperature, radiation and total precipitation by partial correlation analysis, declining precipitation frequency may drive earlier foliar senescence date from 1982 to 2022.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
Atmospheric elemental mercury (Hg) assimilation by foliage contributes prevalently to the global atmospheric Hg sink in forests. Today, little is known about the mechanisms of foliar Hg accumulation and how climate factors and tree physiology interact to impact it. Here, we examined meteorological factors, foliar physiological traits, and Hg accumulation rates from leaf emergence to senescence in a tropical rainforest, tropical savanna, and subtropical evergreen broadleaf forest.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
Physiol Plant
August 2024
Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China.
Environ Sci Technol
October 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
Biogeochemical processes of atmospherically deposited cadmium (Cd) in soils and accumulation in rice were investigated through a three-year fully factorial atmospheric exposure experiment using Cd stable isotopes and diffusive gradients in thin films (DGT). Our results showed that approximately 37-79% of Cd in rice grains was contributed by atmospheric deposition through root and foliar uptake during the rice growing season, while the deposited Cd accounted for a small proportion of the soil pools. The highly bioavailable metals in atmospheric deposition significantly increased the soil DGT-measured bioavailable fraction; yet, this fraction rapidly aged following a first-order exponential decay model, leading to similar percentages of the bioavailable fraction in soils exposed for 1-3 years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!