Background: Exenatide is a stable analogue of glucagon-like peptide 1 that can reduce postprandial hyperglycemia and has been utilized as adjunctive therapy for type 1 diabetes mellitus (T1DM). The human umbilical cord is a rich source of MSCs, and human umbilical cord mesenchymal stem cells (hUCMSCs) also show potential to enhance insulin secretion. Here, we aimed to explore the effects of hUCMSCs carrying exenatide in T1DM and further identify the possible mechanisms involved.

Methods: hUCMSCs were isolated from human umbilical cord tissues, identified, and transduced with recombinant lentivirus carrying exenatide to obtain exenatide-carrying hUCMSCs (hUCMSCs@Ex-4).

Results: The results showed that hUCMSCs@Ex-4 restored the blood glucose levels and body weight of NOD mice, and repressed immune cell infiltration and islet tissue changes. Additionally, in T1DM mice, treatment with hUCMSCs@Ex-4 reduced the blood glucose levels and promoted repair of islet tissue damage. Moreover, hUCMSCs@Ex-4 attenuated renal tissue lesions in T1DM mice. Applying bioinformatic analysis, the effects of hUCMSCs@Ex-4 were suggested to correlate with decreased abundance of pro-inflammatory intestinal bacteria and increased abundance of anti-inflammatory intestinal bacteria.

Conclusion: Overall, the study indicated that hUCMSCs carrying exenatide might improve beneficial intestinal microflora abundance and promote islet tissue damage repair, thereby alleviating T1DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746121PMC
http://dx.doi.org/10.1186/s10020-022-00526-0DOI Listing

Publication Analysis

Top Keywords

carrying exenatide
16
islet tissue
16
hucmscs carrying
12
tissue damage
12
human umbilical
12
umbilical cord
12
intestinal microflora
8
damage repair
8
blood glucose
8
glucose levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!