Background: Brain tumor segmentation plays a significant role in clinical treatment and surgical planning. Recently, several deep convolutional networks have been proposed for brain tumor segmentation and have achieved impressive performance. However, most state-of-the-art models use 3D convolution networks, which require high computational costs. This makes it difficult to apply these models to medical equipment in the future. Additionally, due to the large diversity of the brain tumor and uncertain boundaries between sub-regions, some models cannot well-segment multiple tumors in the brain at the same time.
Results: In this paper, we proposed a lightweight hierarchical convolution network, called LHC-Net. Our network uses a multi-scale strategy which the common 3D convolution is replaced by the hierarchical convolution with residual-like connections. It improves the ability of multi-scale feature extraction and greatly reduces parameters and computation resources. On the BraTS2020 dataset, LHC-Net achieves the Dice scores of 76.38%, 90.01% and 83.32% for ET, WT and TC, respectively, which is better than that of 3D U-Net with 73.50%, 89.42% and 81.92%. Especially on the multi-tumor set, our model shows significant performance improvement. In addition, LHC-Net has 1.65M parameters and 35.58G FLOPs, which is two times fewer parameters and three times less computation compared with 3D U-Net.
Conclusion: Our proposed method achieves automatic segmentation of tumor sub-regions from four-modal brain MRI images. LHC-Net achieves competitive segmentation performance with fewer parameters and less computation than the state-of-the-art models. It means that our model can be applied under limited medical computing resources. By using the multi-scale strategy on channels, LHC-Net can well-segment multiple tumors in the patient's brain. It has great potential for application to other multi-scale segmentation tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749147 | PMC |
http://dx.doi.org/10.1186/s12859-022-05039-5 | DOI Listing |
Sci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFPituitary
December 2024
Department of Endocrinology and Nutrition, Hospital Universitario de Puerta de Hierro Majadahonda, Madrid, Spain.
Purpose: Studies focused on the effects of sellar and/or perisellar (S/PS) meningiomas on pituitary function are scarce. The primary objective of the present study was to determinate the effects that S/PS meningiomas and their treatments have on pituitary function. Also, we described the clinical characteristics and therapeutic outcomes of the cohort of adult Spanish patients.
View Article and Find Full Text PDFChilds Nerv Syst
December 2024
Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
Purpose: We aimed to present our surgical experience and the impact of a solid or cystic morphology of cerebellar pilocytic astrocytoma (cPA) on surgery and the risk for a re-resection.
Methods: We retrospectively analyzed all children operated at our institution between 2009 and 2023 for cPA. Tumours were categorized into 4 groups: (i) cystic PA without cyst wall enhancement, (ii) cystic PA with cyst wall enhancement, (iii) solid tumour, (iv) and solid tumour with central necrosis.
Biol Trace Elem Res
December 2024
School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder emerging during early childhood. However, the mechanism underlying the pathogenesis of ASD remains unclear. This study investigated the alterations of elements in serum and prefrontal cortex of BTBR T + tf/J (BTBR) mice and potential mechanisms.
View Article and Find Full Text PDFTrends Cancer
December 2024
Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA; Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
Metastasis is responsible for most cancer-related deaths. Different cancers have their own preferential sites of metastases, a phenomenon termed metastatic organotropism. The mechanisms underlying organotropism are multifactorial and include the generation of a pre-metastatic niche (PMN), metastatic homing, colonization, dormancy, and metastatic outgrowth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!