Hydrogenated amorphous silicon (a-Si: H) has received great attention for rich fundamental physics and potentially inexpensive solar cells. Here, we observe new resonant excitons and correlated plasmons tunable via hydrogen content in a-Si: H films on Indium Tin Oxide (ITO) substrate. Spectroscopic ellipsometry supported with High Resolution-Transmission Electron Microscopy (HR-TEM) is used to probe optical properties and the density of electronic states in the various crystallinity from nano-size crystals to amorphous a-Si: H films. The observed optical and electronic structures are analyzed by the second derivative with analytic critical-point line shapes. The complex dielectric function shows good agreement with microscopic calculations for the energy shift and the broadening inter-band transitions based on the electron-hole interaction. Interestingly, we observe an unusual spectral weight transfer over a broad energy range revealing electronic correlations that cause a drastic change in the charge carrier density and determine the photovoltaic performance. Furthermore, the interplay of resonant excitons and correlated plasmons is discussed in term of a correlated plexciton. Our result shows the important role of hydrogen in determining the coupling of excitons and plasmons in a-Si: H film for photovoltaic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748134 | PMC |
http://dx.doi.org/10.1038/s41598-022-24713-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!