Background: Obesity among older adults has increased tremendously. Obesity accelerates ageing and predisposes to age-related conditions and diseases, such as loss of endurance capacity, insulin resistance and features of the metabolic syndrome. Namely, ectopic lipids play a key role in the development of nonalcoholic fatty liver disease (NAFLD) and myosteatosis, two severe burdens of ageing and metabolic diseases. Adiponectin (ApN) is a hormone, mainly secreted by adipocytes, which exerts insulin-sensitizing and fat-burning properties in several tissues including the liver and the muscle. Its overexpression also increases lifespan in mice. In this study, we investigated whether an ApN receptor agonist, AdipoRon (AR), could slow muscle dysfunction, myosteatosis and degenerative muscle markers in middle-aged obese mice. The effects on myosteatosis were compared with those on NAFLD.

Methods: Three groups of mice were studied up to 62 weeks of age: One group received normal diet (ND), another, high-fat diet (HFD); and the last, HFD combined with AR given orally for almost 1 year. An additional group of young mice under an ND was used. Treadmill tests and micro-computed tomography (CT) were carried out in vivo. Histological, biochemical and molecular analyses were performed on tissues ex vivo. Bodipy staining was used to assess intramyocellular lipid (IMCL) and lipid droplet morphology.

Results: AR did not markedly alter diet-induced obesity. Yet, this treatment rescued exercise endurance in obese mice (up to 2.4-fold, P < 0.05), an event that preceded the improvement of insulin sensitivity. Dorsal muscles and liver densities, measured by CT, were reduced in obese mice (-42% and -109%, respectively, P < 0.0001), suggesting fatty infiltration. This reduction tended to be attenuated by AR. Accordingly, AR significantly mitigated steatosis and cellular ballooning at liver histology, thereby decreasing the NALFD activity score (-30%, P < 0.05). AR also strikingly reversed IMCL accumulation either due to ageing in oxidative fibres (types 1/2a, soleus) or to HFD in glycolytic ones (types 2x/2b, extensor digitorum longus) (-50% to -85%, P < 0.05 or less). Size of subsarcolemmal lipid droplets, known to be associated with adverse metabolic outcomes, was reduced as well. Alleviation of myosteatosis resulted from improved mitochondrial function and lipid oxidation. Meanwhile, AR halved aged-related accumulation of dysfunctional proteins identified as tubular aggregates and cylindrical spirals by electron microscopy (P < 0.05).

Conclusions: Long-term AdipoRon treatment promotes 'healthy ageing' in obese middle-aged mice by enhancing endurance and protecting skeletal muscle and liver against the adverse metabolic and degenerative effects of ageing and caloric excess.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891981PMC
http://dx.doi.org/10.1002/jcsm.13148DOI Listing

Publication Analysis

Top Keywords

obese mice
12
middle-aged obese
8
mice
6
adiporon enhances
4
enhances healthspan
4
healthspan middle-aged
4
mice striking
4
striking alleviation
4
myosteatosis
4
alleviation myosteatosis
4

Similar Publications

The prevalence of childhood obesity is rising globally, with some obese children progressing to develop metabolic syndrome (MS). However, the specific differences between these groups remain unclear. To investigate the differences in gut microbiota, we conducted physiological and biochemical assessments, alongside 16S rRNA sequencing, in a cohort of 32 children from Southeastern China, which included 4 normal-weight children, 5 with mild obesity, 9 with moderate obesity, 9 with severe obesity, and 5 with metabolic syndrome.

View Article and Find Full Text PDF

Obesity is a global health crisis, with its prevalence particularly severe in the United States, where over 42% of adults are classified as obese. Obesity is driven by complex molecular and tissue-level mechanisms that remain poorly understood. Among these, angiogenesis-primarily mediated by vascular endothelial growth factor (VEGF-A)-is critical for adipose tissue expansion but presents unique challenges for therapeutic targeting due to its intricate regulation.

View Article and Find Full Text PDF

Adipose ZFP36 protects against diet-induced obesity and insulin resistance.

Metabolism

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:

Aims: Obesity, as a worldwide healthcare problem, has become more prevalent. ZFP36 is a well-known RNA-binding protein and involved in the posttranscriptional regulation of many physiological processes. Whether the adipose ZFP36 plays a role in obesity and insulin resistance remains unclear.

View Article and Find Full Text PDF

Mechanistic insights into GLP-1 receptor agonist-induced weight loss through ceRNA network analysis.

Genomics

January 2025

Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China. Electronic address:

Background: GLP-1 receptor agonists (GLP-1RA) have been extensively utilized in the management of body weight in individuals with obesity. Circular RNA (circRNA), a class of covalently closed RNA molecules, has garnered increasing attention for its potential role in the pathogenesis of obesity. However, the specific mechanisms through which circRNA contributes to GLP-1RA-induced weight loss remains elusive.

View Article and Find Full Text PDF

Changes in the gut microbiota are associated with obesity and may influence weight loss. We are currently implementing a sustained multidisciplinary collaborative weight management (MCWM) approach to weight loss. We report significant improvements in participant health status after 6 months, along with alterations in the structure, interactions, and metabolic functions of the microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!