Background: Stem cells apheresis is a key step in the process of the autologous stem cell transplantation. Available blood cell separators (BCS) have different efficiency due to the technical characteristics and influence of the operator.
Materials And Methods: Retrospectively, data were collected of the peripheral blood stem cells apheresis performed using available BCS manufactured by Fresenius (ComTec and Amicus) in the National Cancer Institute Ukraine from 2017 to 2020. The collection efficiency coefficient (CEC) was calculated, the formula for predicting the total volume of processed blood (TVPB) was adapted for each separator.
Results: The analysis included data from 60 patients (total of 92 apheresis procedures). The mean CEC was established at the level of (53.8 ± 36.6) % for the Amicus device and (44.2 ± 37.3) % for the ComTec device; P = 0.22. The lower product volume was obtained using the Amicus device compared to the ComTec device; P = 2×10-7. The amount of collected stem cells was comparable in both groups (5.8 ± 5.7) ×106/kg and (4.1 ± 3.1) ×106/kg, respectively; P = 0.064. The adaptation of the formula for predicting the TVPB to achieve the optimum amount of stem cells was performed.
Conclusion: The CEC for each device was within the generally accepted limits of 30-50%, and did not differ significantly. Nevertheless, using of the Amicus BCS allowed to collect lower volumes of the product, maintaining other characteristics of the product competitive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.48095/ccko2022448 | DOI Listing |
BioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!