2D materials have captured much recent research interest in a broad range of areas, including electronics, biology, sensors, energy storage, and others. In particular, preparing 2D nanosheets with high quality and high yield is crucial for the important applications in energy storage and conversion. Compared with other prevailing synthetic strategies, the electrochemical exfoliation of layered starting materials is regarded as one of the most promising and convenient methods for the large-scale production of uniform 2D nanosheets. Here, recent developments in electrochemical delamination are reviewed, including protocols, categories, principles, and operating conditions. State-of-the-art methods for obtaining 2D materials with small numbers of layers-including graphene, black phosphorene, transition metal dichalcogenides and MXene-are also summarized and discussed in detail. The applications of electrochemically exfoliated 2D materials in energy storage and conversion are systematically reviewed. Drawing upon current progress, perspectives on emerging trends, existing challenges, and future research directions of electrochemical delamination are also offered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202206702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!