This study verified the feasibility of simultaneous partial nitrification, anammox, denitrification and fermentation process under intermittent aeration in a single reactor, and explored the impact of dissolved oxygen (DO) on the synergy between fermentation and nitrogen removal. An advanced nitrogen removal efficiency of 92.8 % and a low observed sludge yield of 0.0268-0.1474 kgMLSS/kgCOD were achieved. In-situ test showed that nitrate and ammonium decreased synchronously in the absence of organic matter, indicating the possibility of simultaneous partial denitrification, anammox and fermentation. Additionally, the abundance of functional genes for acetate production was 66,894 hits, while the key genes relevant to methanogenesis were only 348 hits, which suggested that fermentation might stop at the acid-producing stage and promote partial denitrification-anammox reaction, achieving simultaneous sludge reduction and advanced nitrogen removal performance. When DO increased from 0.1-0.3 to 0.4-0.6 mg/L, the nitrogen removal efficiency was increased (63.9 %→92.8 %) while sludge reduction was negatively affected.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.128484DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
20
simultaneous partial
12
sludge reduction
12
partial nitrification
8
nitrification anammox
8
anammox denitrification
8
denitrification fermentation
8
fermentation process
8
single reactor
8
advanced nitrogen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!