It is important to study the effect of oxygen-containing functional groups on the competitive adsorption mechanism of benzene and water on the surface of carbon materials, and to directional modification of activated carbon to improve its selective adsorption of benzene in air. In this study, the adsorption characteristics of benzene and water on original and linked ester, carboxyl, hydroxyl, carbon materials linked by ether groups were calculated by quantum chemical simulation based on density functional theory. The types and proportions of weak interactions in the adsorption process were calculated by energy decomposition analysis, and the adsorption mechanism of carbon materials for water and benzene was described. The influence and contribution of oxygen-containing functional groups on the adsorption of benzene and water were further analyzed by van der Waals potential and electrostatic potential, respectively, so as to determine the difference in the adsorption effect of different types of oxygen-containing functional groups on the two molecules. It was found that the carboxyl group has a great influence on the hydrophilicity of carbon materials, and the electrostatic potential distribution before and after linking the carboxyl group changed significantly. Therefore, they can attract each other with water through hydrogen bonds and occupy the surface adsorption sites of carbon materials, thereby inhibiting the adsorption of benzene on carbon materials. On the contrary, due to its hydrophobic properties, the ether group will free up adsorption space for the adsorption of benzene on the surface of the carbon material, which is beneficial to the adsorption of benzene. The adsorption experiments were carried out, and the results were consistent with the simulation. This study provides an idea for preparing efficient carbonaceous adsorbent of benzene and reducing benzene pollution in industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160772DOI Listing

Publication Analysis

Top Keywords

carbon materials
28
adsorption benzene
24
functional groups
16
benzene water
16
adsorption
14
oxygen-containing functional
12
benzene
11
carbon
9
groups competitive
8
competitive adsorption
8

Similar Publications

Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage.

Nanotechnology

January 2025

Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.

View Article and Find Full Text PDF

High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors.

Sci Adv

January 2025

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.

Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).

View Article and Find Full Text PDF

Tailoring the Porous Structure of Carbon for Enhanced Oxidative Cleavage and Esterification of C(CO)-C Bonds.

ChemSusChem

December 2024

National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.

The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.

View Article and Find Full Text PDF

Rational design of redox active metal organic frameworks for mediated electron transfer of enzymes.

Mater Horiz

January 2025

Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.

The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.

View Article and Find Full Text PDF

Ecofriendly and biocompatible biochars derived from waste-branches for direct and efficient solid-phase extraction of benzodiazepines in crude urine sample prior to LC-MS/MS.

Mikrochim Acta

January 2025

School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.

Biochars (BCs) derived from waste-branches of apple tree, grape tree, and oak were developed for direct solid-phase extraction (SPE) of five benzodiazepines (BZDs) in crude urine samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. Scanning electron microscopy, elemental analyzer, X-ray diffractometry, N adsorption/desorption experiments, and Fourier transform infrared spectrometry characterizations revealed the existence of their mesoporous structure and numerous oxygen-containing functional groups. The obtained BCs not only possessed high affinity towards BZDs via π-π and hydrogen bond interactions, but also afforded the great biocompatibility of excluding interfering components from undiluted urine samples when using SPE adsorbents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!