The roles of Cyp1a2 and Cyp2d in pharmacokinetic profiles of serotonin and norepinephrine reuptake inhibitor duloxetine and its metabolites in mice.

Eur J Pharm Sci

Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Published: February 2023

Duloxetine (DLX) is widely used to treat major depressive disorder. Little is known about the mechanistic basis for DLX-related adverse effects (e.g., liver injury). Human CYP1A2 and CYP2D6 mainly contributes to DLX metabolism, which was proposed to be involved in its adverse effects. Here, we investigated the roles of Cyp1a2 and Cyp2d on DLX pharmacokinetic profile and tissue distribution using a Cyp1a2 knockout (Cyp1a2-KO) mouse model together with a Cyp2d inhibitor (propranolol). Cyp1a2-KO has the few effects on the systematic exposure (area under the plasma concentration-time curve, AUC) and tissue disposition of DLX and its primary metabolites. Propranolol dramatically increased the AUCs of DLX by 3 folds and 1.5 folds in WT and Cyp1a2-KO mice, respectively. Meanwhile, Cyp2d inhibitor decreased the AUC of Cyp2d-involved DLX metabolites (e.g., M16). Mouse tissue distribution revealed that DLX and its major metabolites were the most abundant in kidney, followed by liver and lung with/without Cyp2d inhibitor. Cyp2d inhibitor significantly increased DLX levels in tissues (e.g., liver) in WT and KO mice and decreases the levels of M3, M15, M16 and M17, while it increased the levels of M4, M28 and M29 in tissues. Our findings indicated that Cyp2d play a fundamental role on DLX pharmacokinetic profile and tissue distribution in mice. Clinical studies suggested that CYP1A2 has more effects on DLX systemic exposure than CYP2D6. Further studies in liver humanized mice or clinical studies concerning CYP2D6 inhibitors-DLX interaction study could clarify the roles of CYP2D6 on DLX pharmacokinetics and toxicity in human.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395004PMC
http://dx.doi.org/10.1016/j.ejps.2022.106358DOI Listing

Publication Analysis

Top Keywords

cyp2d inhibitor
16
tissue distribution
12
dlx
11
roles cyp1a2
8
cyp1a2 cyp2d
8
adverse effects
8
dlx pharmacokinetic
8
pharmacokinetic profile
8
profile tissue
8
mice clinical
8

Similar Publications

Human CYP2D6 varies across the estrous cycle in brains of transgenic mice altering drug response.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Cytochrome P450 (CYP) 2Ds are drug metabolizing enzymes found in brain and liver which metabolize numerous centrally acting drugs. Inhibition and induction of CYP2D-mediated metabolism in rodent brain alters brain drug and metabolite concentrations and resulting drug response. In female rats, brain CYP2D metabolism varies across the estrous cycle and with exogenous estrogen, changing brain drug concentrations and response.

View Article and Find Full Text PDF

The roles of Cyp1a2 and Cyp2d in pharmacokinetic profiles of serotonin and norepinephrine reuptake inhibitor duloxetine and its metabolites in mice.

Eur J Pharm Sci

February 2023

Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Duloxetine (DLX) is widely used to treat major depressive disorder. Little is known about the mechanistic basis for DLX-related adverse effects (e.g.

View Article and Find Full Text PDF

CYP2D in the brain impacts oral hydrocodone analgesia in vivo.

Neuropharmacology

December 2022

Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Cytochrome P450 2D (CYP2D) metabolises many centrally-acting substrates including opioids. Hydrocodone, an opioid and CYP2D substrate, is metabolised to hydromorphone, an active metabolite. CYP2D in the brain is active in vivo and can alter drug response however, it is unknown whether metabolism by CYP2D in the brain alters oral hydrocodone induced analgesia.

View Article and Find Full Text PDF

Efforts in precision medicine to combat aberrant epigenome have led to the development of epigenetic targeting drugs. We have previously reported the capability of the BZD9L1 epigenetic modulator to impede colorectal tumour growth in vitro and in vivo through sirtuin (SIRT) inhibition. Although most benzimidazole derivatives are commonly less toxic, their effects on SIRTs and cytochrome P450 (CYP) regulations have not been explored alongside toxicity assessments.

View Article and Find Full Text PDF

Sex, estrous cycle, and hormone regulation of CYP2D in the brain alters oxycodone metabolism and analgesia.

Biochem Pharmacol

April 2022

Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Opioids, and numerous centrally active drugs, are metabolized by cytochrome P450 2D (CYP2D). There are sex and estrous cycle differences in brain oxycodone analgesia. Here we investigated the mechanism examining the selective role of CYP2D in the brain on sex, estrous cycle, and hormonal regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!