Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tenomodulin (Tnmd) is a type II transmembrane glycoprotein that regulates tendon development and maturation. Our previous study indicated that mechanical stretch could induce Tnmd expression to promote tenocyte migration, associated with reinforcement of fibrous actin (F-actin) stress fibers and chromatin decondensation. However, the detailed molecular mechanisms of this processes are far from clear. Activation of mitogen-activated protein kinase (MAPK) signaling occurs in response to various extracellular stimuli and controls a large number of fundamental cellular processes. The present study we investigated the influence of MAPK signaling on mechanical stretch-induced Tnmd expression and its action way. Expression and activities of extracellular signal-related kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinases (JNK) and p38 MAPK (p38) were determined by Western blot. Cell migration was detected by Transwell assay. Immunofluorescence staining was used to detect F-actin stress fibers. Nuclear chromatin decondensation was detected by in situ DNaseI sensitivity assay. It was found that mechanical stretch promoted Tnmd expression by activating ERK1/2, JNK and p38 signaling. The inhibition of the ERK1/2, JNK or p38 repressed mechanical stretch-promoted tenocyte migration and mechanical stretch-induced reinforcement of F-actin stress fibers. However, only ERK1/2 and p38 inhibitor could repress mechanical stretch-induced chromatin decondensation, and the JNK inhibitor had no significant effect. Moreover, latrunculin (Lat A), the most widely used reagent to depolymerize actin filaments, could inhibit the stretch-induced chromatin decondensation. Taken together, our findings elucidated a molecular pathway by which a mechanical signal is transduced via activation of MAPK signaling to influence reinforcement of F-actin stress fibers and chromatin decondensation, which could further lead Tnmd expression to promote tenocyte migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2022.109486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!