A singular Riemannian geometry approach to deep neural networks II. Reconstruction of 1-D equivalence classes.

Neural Netw

Dipartimento di Scienze del Sistema Nervoso e del Comportamento, Università di Pavia, Via Agostino Bassi, 21, Pavia, 27100, Italy; Gruppo Nazionale per la Fisica Matematica, INDAM, Italy; Istituto Nazionale di Fisica Nucleare, sezione di Milano, INFN, Italy. Electronic address:

Published: January 2023

We proposed in a previous work a geometric framework to study a deep neural network, seen as sequence of maps between manifolds, employing singular Riemannian geometry. In this paper, we present an application of this framework, proposing a way to build the class of equivalence of an input point: such class is defined as the set of the points on the input manifold mapped to the same output by the neural network. In other words, we build the preimage of a point in the output manifold in the input space. In particular. We focus for simplicity on the case of neural networks maps from n-dimensional real spaces to (n-1)-dimensional real spaces, we propose an algorithm allowing to build the set of points lying on the same class of equivalence. This approach leads to two main applications: the generation of new synthetic data and it may provides some insights on how a classifier can be confused by small perturbation on the input data (e.g. a penguin image classified as an image containing a chihuahua). In addition, for neural networks from 2D to 1D real spaces, we also discuss how to find the preimages of closed intervals of the real line. We also present some numerical experiments with several neural networks trained to perform non-linear regression tasks, including the case of a binary classifier.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2022.11.026DOI Listing

Publication Analysis

Top Keywords

neural networks
16
real spaces
12
singular riemannian
8
riemannian geometry
8
deep neural
8
neural network
8
class equivalence
8
set points
8
neural
6
geometry approach
4

Similar Publications

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory.

Langmuir

January 2025

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.

Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.

View Article and Find Full Text PDF

Mapping the chemical reaction pathways and their corresponding activation barriers is a significant challenge in molecular simulation. Given the inherent complexities of 3D atomic geometries, even generating an initial guess of these paths can be difficult for humans. This paper presents an innovative approach that utilizes neural networks to generate initial guesses for reaction pathways based on the initial state and learning from a database of low-energy transition paths.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!