A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous detection and separation of uranium based on a fluorescent amidoxime-functionalized covalent organic polymer. | LitMetric

Simultaneous detection and separation of uranium based on a fluorescent amidoxime-functionalized covalent organic polymer.

Spectrochim Acta A Mol Biomol Spectrosc

State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China. Electronic address:

Published: March 2023

To ensure the long-term sustainable development of nuclear energy as well as the prevention and control of uranium pollution, new materials that can simultaneously detect and separate uranium are still urgently needed. Herein, a new fluorescent covalent organic polymer (COP), namely HT-COP-AO, was synthesized andemployed as both the fluorescent probe and absorbent for simultaneous uranium detection and separationconsidering its excellent fluorescence property and strong uranium coordination ability. The results showed that the fluorescence of HT-COP-AO was quickly quenched by uranium within 2 min, and the limit of detection was 0.23 µM (3σ/K). Further studies implied that uranium was coordinated with the amidoxime groups of HT-COP-AO through U-N and O = U = O bonds, which resulted in electron transfer from uranium to HT-COP-AO and quenching the fluorescence of HT-COP-AO consequently. Meanwhile, HT-COP-AO exhibited excellent absorption ability towards uranium, and the maximum absorption capacity (q = 401.3 mg/g) was higher than most reported amidoxime modified materials. The HT-COP-AO also showed high selectivity for both uranium detection and separation which makes it a great promising for uranium monitoring in real water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.122182DOI Listing

Publication Analysis

Top Keywords

uranium
11
detection separation
8
covalent organic
8
organic polymer
8
uranium detection
8
fluorescence ht-cop-ao
8
ht-cop-ao
7
simultaneous detection
4
separation uranium
4
uranium based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!