In the present study, a highly accurate and sensitive azo-dye-based colorimetric sensor based on Eriochrome Black T (EBT) was proposed to detect and determine thiourea (TU). TU is truly an important toxic and carcinogenic hazardous pollutant as approved by EPA and IARC. This chemosensor shows a distinct color change from blue to pink during interaction with TU in aqueous medium. So EBT is capable as an applied tool for naked eye detection of TU as its color change is easily observed without any means. The sensing mechanism was also investigated using UV-vis absorption and FT-IR spectra. The linear range and the detection limit of TU sensing were respectively 0.15-18.5 μmol/L and 0.02 μmol/L. In addition, the relative standard deviation (RSD) based on ten repetitions calculated for two different TU concentrations 4.4 and 9.0 μmol/L were 2.3 % and 1.8 %, respectively. Besides its useful application as a naked eye detection tool, the advantages of the developed method include simplicity, elimination of tedious separation and pre-concentration steps, executable in neutral aqueous media, low costs, high accuracy, linear response for wide range of concentrations, low detection limit, high sensitivity, compatibility, and excellent selectivity. The concentration of TU in tap water, fruit juices or fruit skin samples can be visually detected and determined easily using this method. The results showed that EBT is an ideal colorimetric chemosensor for TU, which has been reported for the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.122194 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!