Nicotinamide adenine dinucleotide (NAD) kinase (NADK) phosphorylates NAD, thereby producing nicotinamide adenine dinucleotide phosphate (NADP). Both NADK genes and the NADP(H)-producing mechanism are evolutionarily conserved among archaea, bacteria, plants and mammals. In mammals, NADK is activated by phosphorylation and protein-protein interaction. Recent studies conducted using genetically altered models validate the essential role of NADK in cellular redox homeostasis and metabolism in multicellular organisms. Here, we describe the evolutionary conservation, molecular properties, and signaling mechanisms and discuss the pathophysiological significance of NADK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763689PMC
http://dx.doi.org/10.1016/j.redox.2022.102561DOI Listing

Publication Analysis

Top Keywords

molecular properties
8
nad kinase
8
kinase nadk
8
nicotinamide adenine
8
adenine dinucleotide
8
nadk
6
properties regulation
4
regulation nad
4
nadk nicotinamide
4
dinucleotide nad
4

Similar Publications

Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation.

View Article and Find Full Text PDF

Helical Assemblies of Colloidal Nanocrystals with Long-Range Order and Their Fusion into Continuous Structures.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Chirality epitomizes the sophistication of chemistry, representing some of its most remarkable achievements. Yet, the precise synthesis of chiral structures from achiral building blocks remains a profound and enduring challenge in synthetic chemistry and materials science. Here, we demonstrate that achiral colloidal nanocrystals, including Au and Ag nanocrystals, can assemble into long-range-ordered helical assemblies with the assistance of chiral molecules.

View Article and Find Full Text PDF

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

Adsorption Structure and Selectivity of Phenols in Water-Immersed Organomontmorillonite Investigated by Molecular Simulation.

Langmuir

January 2025

Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Tokyo, Hachioji 192-0015, Japan.

The two-dimensional interlayer space of layered materials has been highlighted due to their adsorption property, whose nanostructure in the water-immersed state is scarcely understood by experiment. Recent developments in molecular simulation have enabled researchers to investigate the interlayer structure, but water content is necessary for accurate modeling. In the present study, we proposed a theoretical method to estimate the saturated water content and adsorption selectivity of trichlorophenol and phenol in montmorillonite modified with hexadecyltrimethylammonium ions.

View Article and Find Full Text PDF

This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!