Large perpendicular magnetic anisotropy energy (MAE) and flexible regulation of the magnitude and direction of MAE have great potential for application in information storage devices. Here, utilizing first-principles calculations, we investigated the magnetic properties of free and MgO(001) supported RuIr clusters (RuIr@MgO( + = 3)). The results indicate that the MAE of mixed clusters increases with the number of Ir atoms due to Ir having a strong coupling between the non-degenerate d and d states. The MAE of free Ir is -8.18 meV with the easy magnetization direction parallel to the -axis, while the MAE of supported Ir on the MgO substrate increases by a factor of 2.6, and the easy magnetization axis of the structure is shifted to a direction perpendicular to the substrate surface. This change in MAE is due to the significant enhancement in the coupling between the non-degenerate d and d states near the Fermi level of Ir atoms. Moreover, Ir@MgO possesses high thermodynamic stability. These results give a new method for manipulating MAE and the direction of easy magnetization, which has great potential for application in magnetic nanodevices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp03760b | DOI Listing |
Int J Biol Macromol
December 2024
School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:
Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).
View Article and Find Full Text PDFInorg Chem
December 2024
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
The interplay between quantum effects from magnetic frustration, low-dimensionality, spin-orbit coupling, and crystal electric field in rare-earth materials leads to nontrivial ground states with unusual magnetic excitations. Here, we investigate YbTaO, which hosts a buckled square net of Yb ions with = 1/2 moments. The observed Curie-Weiss temperature is about -1 K, implying an antiferromagnetic coupling between the Yb moments.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFAnn Ital Chir
December 2024
General and Thoracic Pediatric Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
Aim: Foreign body ingestion, particularly that of magnets, is a significant issue for children aged 6 months to 3 years due to their prevalence in toys and household items. Most ingested foreign bodies pass naturally, but 10%-20% of such cases require endoscopic removal, and <1% require surgery.
Case Presentation: A 2-year-old girl presented with abdominal pain, nausea, and vomiting.
J Orthop Traumatol
December 2024
Sapienza Universitiy, Rome, Italy.
Introduction: The plantar plate, also called the plantar ligament, is a fibrocartilaginous structure found in the metatarsophalangeal (MTP) and interphalangeal (IP) joints. Our study aimed to evaluate the role of magnetic resonance imaging (MRI) performed with the patient in the standard position or with joint hyperextension (the "stress test", ST) in the study of plantar plate (PP) disease that involves metatarsophalangeal joints.
Materials And Methods: All patients underwent forefoot MRI (Atroscan C, Esaote, Genoa, Italy), operating at 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!