Many glycosylated natural products display biological activity and are deglycosylated by the metabolic processes of the body. Although unnatural CF-glycosides have been proposed as nonhydrolyzable analogues, CF-derivatives of natural products are exceedingly challenging to synthesize and few examples exist. These difluorinated molecules may have unique conformational behavior as a consequence of changing the glycosidic linkage. In this study, we performed conformational searches using MacroModel followed by molecular dynamics simulations to investigate the conformational behavior of the glycosidic bonds in flavonoid--glycosides and in corresponding CF-glycosylated derivatives. Compared to their -glycosylated analogues, flavonoid-3-CF-glycosides and flavonoid-5-CF-glycosides showed conformational bias, whereas flavonoid-7-CF-glycosides showed more flexibility. Flavonoid-5-CF-glycosides were the least flexible compared to all others. Our results show that the site of the glycosylation and the substitution pattern on the flavonoid determine the conformational properties of these molecules. These two factors influence the steric destabilization and/or stereoelectronic stabilization which govern the conformational behavior of the flavonoid glycosides. Moreover, a docking study of quercitrin and its CF-analogue into murine ribosomal kinase RSK2 demonstrated the potential for flavonoid-CF-glycosides to retain a similar binding pose as the parent -glycoside. These findings will assist in designing stable flavonoid-CF-glycosides for carbohydrate research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9904208PMC
http://dx.doi.org/10.1021/acs.jcim.2c01147DOI Listing

Publication Analysis

Top Keywords

conformational behavior
12
natural products
8
conformational
6
comparison conformational
4
conformational analyses
4
analyses naturally
4
naturally occurring
4
occurring flavonoid--glycosides
4
flavonoid--glycosides unnatural
4
unnatural flavonoid-cf-glycosides
4

Similar Publications

Digestion of food proteins: the role of pepsin.

Crit Rev Food Sci Nutr

January 2025

Riddet Institute, Massey University, Palmerston North, New Zealand.

The nutritive value of a protein is determined not only by its amino acid composition, but also by its digestibility in the gastrointestinal tract. The interaction between proteins and pepsin in the gastric stage is the first step and plays an important role in protein hydrolysis. Moreover, it affects the amino acid release rates and the allergenicity of the proteins.

View Article and Find Full Text PDF

pH-induced conformational changes in the selectivity filter of a potassium channel lead to alterations in its selectivity and permeation properties.

Front Pharmacol

January 2025

IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain.

The Selectivity Filter (SF) in tetrameric K channels, has a highly conserved sequence, TVGYG, at the extracellular entry to the channel pore region. There, the backbone carbonyl oxygens from the SF residues, create a stack of K binding sites where dehydrated K binds to induce a conductive conformation of the SF. This increases intersubunit interactions and confers a higher stability to the channel against thermal denaturation.

View Article and Find Full Text PDF

Fascin structural plasticity mediates flexible actin bundle construction.

Nat Struct Mol Biol

January 2025

Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.

Fascin cross-links actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-EM, cryo-electron tomography coupled with custom denoising and computational modeling to probe human fascin-1's F-actin cross-linking mechanisms across spatial scales.

View Article and Find Full Text PDF

Enriching the structural diversity of metal-organic frameworks (MOFs) is of great importance in developing functional porous materials with specific properties. New MOF structures can be accessed through the rational design of organic linkers with diverse geometric conformations, and their structural complexity can be enhanced by choosing linkers with reduced symmetry. Herein, a series of Zr-based MOFs with unprecedented topologies were developed through a linker desymmetrization and conformation engineering approach.

View Article and Find Full Text PDF

Lipophilic molecular rotor to assess the viscosity of oil core in nano-emulsion droplets.

Soft Matter

January 2025

INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France.

Characterization of nanoscale formulations is a continuous challenge. Size, morphology and surface properties are the most common characterizations. However, physicochemical properties inside the nanoparticles, like viscosity, cannot be directly measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!