Enantioselective Michael Addition/Cyclization/Desymmetrization Sequence of Prochiral Cyclic Hemiacetals and Nitroolefins: Synthesis of Chiral Oxygen-Bridged Bicyclic Compounds.

Org Lett

Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.

Published: December 2022

The organocatalytic enantioselective Michael addition of functionalized prochiral cyclic hemiacetals and nitroolefins has been developed under cooperative enamine and hydrogen bond catalysis. The obtained chiral hemiacetal intermediates could be used in the subsequent diastereocontrolled cyclization/desymmetrization divergent process to access (1) 9-oxabicyclo[3.3.1]nonane or 8-oxabicyclo[3.2.1]octane frameworks via oxocarbenium ion-mediated Friedel-Crafts cyclization, and (2) 2,9-dioxabicyclo[3.3.1]nonane frameworks via intramolecular nucleophilic cyclization. Experimental results suggest that there is neighboring group participation controlling the diastereoselectivities of the desymmetrization process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c03815DOI Listing

Publication Analysis

Top Keywords

enantioselective michael
8
prochiral cyclic
8
cyclic hemiacetals
8
hemiacetals nitroolefins
8
michael addition/cyclization/desymmetrization
4
addition/cyclization/desymmetrization sequence
4
sequence prochiral
4
nitroolefins synthesis
4
synthesis chiral
4
chiral oxygen-bridged
4

Similar Publications

Organocatalytic, enantioselective decarboxylative Mannich reactions of α,β-unsaturated β'-ketoacids and isatin -Boc imines, to give the corresponding 3-carbamoyl-2-oxindole derivatives, were developed. Subsequent N-deprotection and diastereoselective, intramolecular, aza-Michael reaction of the free amine provides previously unreported spiro[indoline-3,2'-piperidine]-2,4'-diones.

View Article and Find Full Text PDF

Catalytic Asymmetric Total Synthesis of (+)-Chamaecydin and (+)-Isochamaecydin and their Stereoisomers.

Angew Chem Int Ed Engl

January 2025

Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China.

A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.

View Article and Find Full Text PDF

Artificial Metalloenzymes with Two Catalytic Cofactors for Tandem Abiotic Transformations.

Angew Chem Int Ed Engl

January 2025

Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, I, SIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland Website.

Artificial metalloenzymes (ArMs) enable the integration of abiotic cofactors within a native protein scaffold, allowing for non-natural catalytic activities. Previous ArMs, however, have primarily relied on single cofactor systems, limiting them to only one catalytic function. Here we present an approach to construct ArMs embedding two catalytic cofactors based on the biotin-streptavidin technology.

View Article and Find Full Text PDF

We present a comprehensive account on the evolution of a synthetic platform for a subfamily of ent-pimaranes. For the most complex member, norflickinflimiod C, five distinct strategies relying on either cationic or radical polyene cyclizations to construct the requisite tricyclic carbon scaffold were explored. Insights from early and late stage oxidative and reductive dearomatization studies ultimately led to a mild, rhodium-catalyzed arene hydrogenation for the final synthetic route.

View Article and Find Full Text PDF

We show the first examples of enantioselective cyclization reactions of tethered sulfamates onto pendant α,β-unsaturated esters, ketones, and thioesters. This reaction is promoted by a new chiral bifunctional guanidine catalyst and is operationally very simple. A variety of primary sulfamates and sulfamides were examined, and in many cases, products were delivered in excellent yields and enantiomeric ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!