AI Article Synopsis

  • Understanding Golgi-resident protein organization is key to sorting molecules and regulating modifications, but studying these changes is often complex and requires detailed experiments.
  • This study suggests using a systems biology approach that focuses on cellular N-glycan profiles to infer changes in Golgi organization and protein localization, making the process simpler.
  • By simulating N-glycan biosynthesis and applying Bayesian analysis, the researchers can reveal how alterations in enzyme amounts and positions affect Golgi organization, demonstrating a new way to integrate math and biology for deeper insights.

Article Abstract

The organization of Golgi-resident proteins is crucial for sorting molecules within the secretory pathway and regulating posttranslational modifications. However, evaluating changes to Golgi organization can be challenging, often requiring extensive experimental investigations. Here, we propose a systems biology approach in which changes to Golgi-resident protein sorting and localization can be deduced using cellular N-glycan profiles as the only experimental input.The approach detailed here utilizes the influence of Golgi organization on N-glycan biosynthesis to investigate the mechanisms involved in establishing and maintaining Golgi organization. While N-glycosylation is carried out in a non-template-driven manner, the distribution of N-glycan biosynthetic enzymes within the Golgi ensures this process is not completely random. Therefore, changes to N-glycan profiles provide clues into how altered cell phenotypes affect the sorting and localization of Golgi-resident proteins. Here, we generate a stochastic simulation of N-glycan biosynthesis to produce a simulated glycan profile similar to that obtained experimentally and then combine this with Bayesian fitting to enable inference of changes in enzyme amounts and localizations. Alterations to Golgi organization are evaluated by calculating how the fitted enzyme parameters shift when moving from simulating the glycan profile of one cellular state (e.g., a wild type) to an altered cellular state (e.g., a mutant). Our approach illustrates how an iterative combination of mathematical systems biology and minimal experimental cell biology can be utilized to maximally integrate biological knowledge to gain insightful knowledge of the underlying mechanisms in a manner inaccessible to either alone.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2639-9_40DOI Listing

Publication Analysis

Top Keywords

golgi organization
16
systems biology
12
golgi-resident proteins
12
biology approach
8
evaluating changes
8
organization golgi-resident
8
sorting localization
8
n-glycan profiles
8
n-glycan biosynthesis
8
glycan profile
8

Similar Publications

Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants' challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample.

View Article and Find Full Text PDF

Discovery of Carbonic Anhydrase 9 as a Novel CLEC2 Ligand in a Cellular Interactome Screen.

Cells

December 2024

Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany.

Membrane proteins, especially extracellular domains, are key therapeutic targets due to their role in cell communication and associations. Yet, their functions and interactions often remain unclear. This study presents a general method to discover interactions of membrane proteins with immune cells and subsequently to deorphanize their respective receptors.

View Article and Find Full Text PDF

Palmitoylation-mediated NLRP3 inflammasome activation in teleosts highlights evolutionary divergence in immune regulation.

Zool Res

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.

NLRP3 inflammasome activation is pivotal for cytokine secretion and pyroptosis in response to diverse stimuli, playing a crucial role in innate immunity. While extensively studied in mammals, the regulatory mechanisms governing NLRP3 activation in non-mammalian vertebrates remain largely unexplored. Teleosts, as basal vertebrates, represent an ideal model for exploring the evolutionary trajectory of inflammasome regulation.

View Article and Find Full Text PDF

Despite the enormous significance of malaria parasites for global health, some basic features of their ultrastructure remain obscure. Here, we apply high-resolution volumetric electron microscopy to examine and compare the ultrastructure of the transmissible male and female sexual blood stages of Plasmodium falciparum as well as the more intensively studied asexual blood stages revisiting previously described phenomena in 3D. In doing so, we challenge the widely accepted notion of a single mitochondrion by demonstrating the presence of multiple mitochondria in gametocytes.

View Article and Find Full Text PDF

A novel ARCN1 splice-site variant in a Chinese girl with central precocious puberty, intrauterine growth restriction, microcephaly, and microretrognathia.

BMC Pediatr

December 2024

Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.

The ARCN1 gene encodes the delta subunit of the coatomer protein complex I (COPI), which is essential for mediating protein transport from the Golgi complex to the endoplasmic reticulum. Variants in ARCN1 are associated with clinical features such as microcephaly, microretrognathia, intrauterine growth restriction, short rhizomelic stature, and developmental delays. We present a case of a patient exhibiting intrauterine growth restriction, preterm birth, microcephaly, micrognathia, and central precocious puberty.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!