Objective: Impaired amine metabolism has been associated with the etiology of migraine, that is, why patients continue to get migraine attacks. However, evidence from cerebrospinal fluid (CSF) is lacking. Here, we evaluated individual amine levels, global amine profiles, and amine pathways in CSF and plasma of interictal migraine patients and healthy controls.
Methods: CSF and plasma were sampled between 8:30 am and 1:00 pm, randomly and interchangeably over the time span to avoid any diurnal and seasonal influences, from healthy volunteers and interictal migraine patients, matched for age, sex, and sampling time. The study was approved by the local medical ethics committee. Individual amines (n = 31), global amine profiles, and specific amine pathways were analyzed using a validated ultraperformance liquid chromatography mass spectrometry platform.
Results: We analyzed n = 99 participants with migraine with aura, n = 98 with migraine without aura, and n = 96 healthy volunteers. Univariate analysis with Bonferroni correction indicated that CSF L-arginine was reduced in migraine with aura (10.4%, p < 0.001) and without aura (5.0%, p = 0.03). False discovery rate-corrected CSF L-phenylalanine was also lower in migraine with aura (6.9%, p = 0.011) and without aura (8.1%, p = 0.001), p = 0.088 after Bonferroni correction. Multivariate analysis revealed that CSF global amine profiles were similar for both types of migraine (p = 0.64), but distinct from controls (p = 0.009). Global profile analyses were similar in plasma. The strongest associated pathways with migraine were related to L-arginine metabolism.
Interpretation: L-Arginine was decreased in the CSF (but not in plasma) of interictal patients with migraine with or without aura, and associated pathways were altered. This suggests that dysfunction of nitric oxide signaling is involved in susceptibility to getting migraine attacks. ANN NEUROL 2023;93:715-728.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ana.26576 | DOI Listing |
J Food Drug Anal
December 2024
Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
In the current study, the effects of fermentation by Lactobacillus acidophilus, Levilactobacillus brevis or Lactiplantibacillus plantarum (La/Lb/Lp, 1-2.5%) and incubation (30/37 °C, C1/C2) of red beetroot juice on the profile of betalains and polyphenols (UHPLC-DAD-MS), and antioxidant capacity using photochemiluminescence (PCL) and spectrophotometric assays (DPPH/ABTS) was investigated. Additionally, anti-glycaemic (anti-AGEs) and anticholinergic (anti-AChE) potential in vitro was analysed.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Chemistry, College of Science, University of Diyala, Baquba, Diyala, Iraq.
The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University, Baltimore, MD, USA.
Background: By 2050 the number of Alzheimer's Disease (AD) patients is projected to exceed 150 million worldwide. AD is an incurable, insufficiently understood, and devastating neurodegenerative disease, with high patient heterogeneity in terms of progression, clinical manifestation (including neuropsychiatric symptoms, NPS) and, importantly, responsiveness to treatment options.[1] In the last 20 years, 98% of clinical trials for AD have failed, highlighting the urgent need to drastically change pre-clinical research to develop better predictors of drug safety and effectiveness.
View Article and Find Full Text PDFFront Genet
December 2024
School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China.
Acylation represents a pivotal biochemical process that is instrumental in the modification of secondary metabolites throughout the growth and developmental stages of plants. The BAHD acyltransferase family within the plant kingdom predominantly utilizes coenzyme A thioester as the acyl donor, while employing alcohol or amine compounds as the acceptor substrates to facilitate acylation reactions. Using bioinformatics approaches, the gene family members in the genome of () were identified and characterized including gene structure, conserved motifs, -acting elements, and potential gene functions.
View Article and Find Full Text PDFNat Commun
January 2025
Folkhälsan Research Center, Helsinki, Finland.
Dissecting the genetic mechanisms underlying urinary metabolite concentrations can provide molecular insights into kidney function and open possibilities for causal assessment of urinary metabolites with risk factors and disease outcomes. Proton nuclear magnetic resonance metabolomics provides a high-throughput means for urinary metabolite profiling, as widely applied for blood biomarker studies. Here we report a genome-wide association study meta-analysed for 3 European cohorts comprising 8,011 individuals, covering both people with type 1 diabetes and general population settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!