Background The efficacy of ferumoxytol, an ultrasmall superparamagnetic iron oxide particle for three-dimensional (3D) MR neurography, has yet to be evaluated. Purpose To evaluate the effects of low-dose ferumoxytol for vascular suppression and nerve visualization in 3D brachial plexus MR neurography as a pilot study. Materials and Methods Volunteers without anemia were prospectively enrolled in July 2021. Brachial plexus MR neurography was performed 30 minutes following infusion of 25% of the standard (510 mg of iron) therapeutic ferumoxytol dose with use of a 3D short-tau inversion recovery T2-weighted fast spin-echo sequence. The 3D fast spin-echo was acquired with and without the use of additional flow suppression techniques. Two musculoskeletal radiologists qualitatively evaluated examinations for the degree of vascular suppression (0-3, none to complete), nerve visualization (0-2, none to full), and motion artifact (0-4, none to severe). Nerve-to-fat, muscle, or vessel contrast ratios were calculated with use of manually drawn regions of interests. Comparisons of the proportion of scans with adequate image quality (vascular suppression, 3; nerve visualization, 1, 2; motion artifacts, 0, 1) were made with use of the McNemar test. Comparisons of quantitative contrast ratios were performed with use of Wilcoxon signed rank tests. < .05 was deemed statistically significant. Results There were 12 volunteers (mean age, 25 years ± 3; six women) evaluated. The scans with adequate vascular suppression increased from 0% to 98% with and without ferumoxytol, respectively ( < .001). All individual nerve assessments of adequate nerve visualization increased from 4%-63% to 36%-100% without and with ferumoxytol, respectively ( < .001-.010), while motion artifacts were unchanged (from 33% to 52%, = .212). Quantitatively, nerve-to-vessel contrast ratios increased from 0.6 without to 7.6 with ferumoxytol ( < .001). The addition of flow suppression did not change nerve-to-vessel contrast ratio quantitatively (from 7.5 to 8.4, > .99) following ferumoxytol. Conclusion Low-dose ferumoxytol improved vascular suppression and nerve visualization in three-dimensional MR neurography of the brachial plexus compared to imaging without ferumoxytol. © RSNA, 2022.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.221087 | DOI Listing |
Med Mol Morphol
January 2025
Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.
This study evaluates the effects of different high-intensity focused ultrasound irradiation (HIFU) methods on local tumor suppression and systemic antitumor effects, including the abscopal effect, in a mouse model of pancreatic cancer. To ascertain the efficacy of the treatment, pancreatic cancer cells were injected into the thighs of mice and HIFU was applied on one side using continuous waves or trigger pulse waves. Then, tumor volume, tissue changes, and immune marker levels were analyzed.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Bone and Soft Tissue Tumors and Melanoma, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, China.
Objectives: Melanoma is a highly aggressive and metastatic form of cancer, and the role of exosomal microRNAs (miRNAs) in its progression remains largely unexplored. This study aimed to investigate the effects of melanoma cell-derived exosomal miR-424-5p on angiogenesis and its underlying mechanisms.
Methods: Exosomes were isolated from melanoma cell lines A375 and A2058, and their effects on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were examined.
Oncol Res
January 2025
Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China.
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!