Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein structure defines protein function and plays an extremely important role in protein characterization. Recently, two groups of researchers from DeepMind and the Baker lab have independently published protein structure prediction tools that can help us obtain predicted protein structures for the whole human proteome. This enabled us to visualize the entire human proteome using predicted 3D structures for the first time. To help other researchers best utilize these protein structure predictions in proteomics experiments, we present the Sequence Coverage Visualizer (SCV), http://scv.lab.gy, a web application for protein sequence coverage 3D visualization. Here we showed a few possible usages of the SCV, including the labeling of post-translational modifications and isotope labeling experiments. These results highlight the usefulness of such 3D visualization for proteomics experiments and how SCV can turn a regular proteomics experiment (identified peptide list) into structural insights. Furthermore, when used together with limited proteolysis, we demonstrated that SCV can help to compare different protein structures from different sources, including predicted ones and existing PDB entries. We hope our tool can provide help in the process of improving protein structure prediction accuracy. Overall, SCV is a convenient and powerful tool for visualizing proteomics results in 3D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232130 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.2c00358 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!