Bio-based propionate attracts increasing attention owing to its green nature and specific food additive market. To date, the time-consuming and costly fermentation process by strict anaerobes makes propionate production not ideal. In this study, we designed a new route for propionate production, in which 1,2-propanediol was first dehydrated to propionaldehyde and then to propionate by taking advantage of the robust oxidization capacity of the KT2440 strain. The high atom economy (0.97 g/g) in this proposed pathway is more advantageous than the previous l-threonine-derived route (0.62 g/g). The molecular mechanism of the extraordinary oxidation capacity of KT2440 was first deciphered. The propionate production was realized in KT2440 by screening suitable glycerol dehydratases and optimizing the expression to eliminate the formation of 1-propanol and the accumulation of the intermediate propionaldehyde. The engineered strain produced propionate with a molar conversion rate of >99% from 1,2-propanediol. A high titer of 46.5 g/L pure propionic acid with a productivity of 1.55 g/L/h and a mass yield of 0.96 g/g was achieved in fed-batch biotransformation. Thus, this study provides another idea for the production of high-purity bio-based propionate from renewable materials with high atom economy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c06405 | DOI Listing |
Front Nutr
January 2025
College of Animal Science, Anhui Science and Technology University, Chuzhou, China.
Introduction: Enterotoxic (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
Limosilactobacillus reuteri DSM 17938 (L. reuteri DSM 17938) was one of the most widely used probiotics in humans for gastrointestinal disorders, but few studies have investigated its role in drug-induced liver injury (DILI). Here, we evaluated the efficacy of L.
View Article and Find Full Text PDFmSystems
January 2025
Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
Unlabelled: Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia. Electronic address:
Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry, Institute of Biochemistry, BOKU University, Vienna, Austria.
Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!