High-Yield Production of Propionate from 1,2-Propanediol by Engineered KT2440, a Robust Strain with Highly Oxidative Capacity.

J Agric Food Chem

CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

Published: December 2022

Bio-based propionate attracts increasing attention owing to its green nature and specific food additive market. To date, the time-consuming and costly fermentation process by strict anaerobes makes propionate production not ideal. In this study, we designed a new route for propionate production, in which 1,2-propanediol was first dehydrated to propionaldehyde and then to propionate by taking advantage of the robust oxidization capacity of the KT2440 strain. The high atom economy (0.97 g/g) in this proposed pathway is more advantageous than the previous l-threonine-derived route (0.62 g/g). The molecular mechanism of the extraordinary oxidation capacity of KT2440 was first deciphered. The propionate production was realized in KT2440 by screening suitable glycerol dehydratases and optimizing the expression to eliminate the formation of 1-propanol and the accumulation of the intermediate propionaldehyde. The engineered strain produced propionate with a molar conversion rate of >99% from 1,2-propanediol. A high titer of 46.5 g/L pure propionic acid with a productivity of 1.55 g/L/h and a mass yield of 0.96 g/g was achieved in fed-batch biotransformation. Thus, this study provides another idea for the production of high-purity bio-based propionate from renewable materials with high atom economy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c06405DOI Listing

Publication Analysis

Top Keywords

propionate production
12
propionate
8
bio-based propionate
8
capacity kt2440
8
high atom
8
atom economy
8
high-yield production
4
production propionate
4
propionate 12-propanediol
4
12-propanediol engineered
4

Similar Publications

Introduction: Enterotoxic (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance.

View Article and Find Full Text PDF

Probiotic Limosilactobacillus reuteri DSM 17938 Alleviates Acute Liver Injury by Activating the AMPK Signaling via Gut Microbiota-Derived Propionate.

Probiotics Antimicrob Proteins

January 2025

Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Limosilactobacillus reuteri DSM 17938 (L. reuteri DSM 17938) was one of the most widely used probiotics in humans for gastrointestinal disorders, but few studies have investigated its role in drug-induced liver injury (DILI). Here, we evaluated the efficacy of L.

View Article and Find Full Text PDF

Interactions between gut microbes and host promote degradation of various fiber components in Meishan pigs.

mSystems

January 2025

Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.

Unlabelled: Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs.

View Article and Find Full Text PDF

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..

View Article and Find Full Text PDF

Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!