Efficient exploration of complex free energy landscapes by stepwise multi-subphase space metadynamics.

J Chem Phys

College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, People's Republic of China.

Published: December 2022

AI Article Synopsis

  • - This text describes a new and efficient method that extends metadynamics to explore complex free energy landscapes (FELs) using a two-step simulation process.
  • - The first step involves using broad and tall Gaussians to rapidly identify a free energy pathway connecting two states, which is then split into smaller, independent subphase spaces for detailed analysis.
  • - Finally, after calculating the free energy landscapes for each subphase, the results are combined to construct the full FEL, demonstrating improved modeling capabilities for complex chemical reactions, particularly at interfaces.

Article Abstract

We present an efficient method based on an extension of metadynamics for exploring complex free energy landscapes (FELs). The method employs two-step metadynamics simulations. In the first step, rapid metadynamics simulations using broad and tall Gaussians are performed to identify a free energy pathway (FEP) connecting the two states of interest. The FEP is then divided into a series of independent subphase spaces that comprise selected discrete images of the system. Using appropriate collective variables (CVs) chosen according to the FEP, the accurate FEL of each subphase space is separately calculated in subsequent divide-and-conquer metadynamics simulations with narrow and low Gaussians. Finally, all FELs calculated in each subphase space are merged to obtain the full FEL. We show that the method greatly improves the performance of the metadynamics approach. In particular, we are able to efficiently model chemical systems with complex FELs, such as chemical reactions at the air/water interface. We demonstrate the performance of this method on two model reactions: the hydrolysis of formaldehyde in the gas phase and at the air/water interface.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0098269DOI Listing

Publication Analysis

Top Keywords

free energy
12
metadynamics simulations
12
complex free
8
energy landscapes
8
subphase space
8
air/water interface
8
metadynamics
6
efficient exploration
4
exploration complex
4
landscapes stepwise
4

Similar Publications

We argue that "processes versus objects" is not a useful dichotomy. There is, instead, substantial theoretical utility in viewing "objects" and "processes" as complementary ways of describing persistence through time, and hence the possibility of observation and manipulation. This way of thinking highlights the role of memory as an essential resource for observation, and makes it clear that "memory" and "time" are also mutually inter-defined, complementary concepts.

View Article and Find Full Text PDF

Radioactive iodine, a key waste product of nuclear energy, has been a significant concern among nuclear materials because of its high volatility and its ability to easily enter the human metabolism. Porous materials containing a large number of N-heterocyclic units such as carbazole in the skeletons use as effective adsorbents showing high iodine capture capacities. Herein, a new carbazole-bismaleimide-based hyper-cross-linked porous organic polymer (CzBMI-POP) was successfully prepared from a new tetra-armed carbazole-maleimide monomer (Bis-Cz(BMI)), which contains biscarbazole units and maleimide side groups.

View Article and Find Full Text PDF

: This study explores how thoracic orientation affects lung pressure and injury outcomes from shock waves, building on earlier research that suggested human posture impacts injury severity. : A layered finite element model of the chest was constructed based on the Chinese Visual Human Dataset (CVH), including the rib and intercostal muscle layers. The dynamic response of the chest under 12 different angle-oriented shock waves under incident pressures of 200 kPa and 500 kPa was calculated.

View Article and Find Full Text PDF

Natural enzymes are powerful catalysts, reducing the apparent activation energy for reactions and enabling chemistry to proceed as much as 10 times faster than the corresponding solution reaction. It has been suggested for some time that, in some cases, quantum tunneling can contribute to this rate enhancement by offering pathways through a barrier inaccessible to activated events. A central question of interest to both physical chemists and biochemists is the extent to which evolution introduces mechanisms below the barrier, or tunneling mechanisms.

View Article and Find Full Text PDF

The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!