Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Strong-field ionization, involving tunnel ionization and electron rescattering, enables femtosecond time-resolved dynamics measurements of chemical reactions involving radical cations. Here, we compare the formation of CHS following the strong-field ionization of the isomers CHSCN and CHNCS. The former involves the release of neutral CN, while the latter involves an intramolecular rearrangement. We find the intramolecular rearrangement takes place on a single picosecond timescale and exhibits vibrational coherence. Density functional theory and coupled-cluster calculations on the neutral and singly ionized species help us determine the driving force responsible for intramolecular rearrangement in CHNCS. Our findings illustrate the complexity that accompanies radical cation chemistry following electron ionization and demonstrate a useful tool for understanding cation dynamics after ionization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0117875 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!