The effect of a saccharin-based artificial sweetener was tested on animal performance measures and on the microbial communities associated with the rumen content and with the rumen epithelium during heat stress. Ten cannulated Holstein-Friesian milking dairy cattle were supplemented with 2 g of saccharin-based sweetener per day, top-dressed into individual feeders for a 7-day adaptation period followed by a 14-day heat stress period. A control group of ten additional cows subjected to the same environmental conditions but not supplemented with sweetener were included for comparison. 16S rRNA gene amplicon sequencing was performed on rumen content and rumen epithelium samples from all animals, and comparisons of rumen content microbiota and rumen epithelial microbiota were made between supplemented and control populations. Supplementation of the saccharin-based sweetener did not affect the rumen content microbiota, but differences in the rumen epithelial microbiota beta-diversity (PERMANOVA, P = 0.003, R2 = 0.12) and alpha-diversity (Chao species richness, P = 0.06 and Shannon diversity, P = 0.034) were detected between the supplemented and control experimental groups. Despite the changes detected in the microbial community, animal performance metrics including feed intake, milk yield, and short-chain fatty acid (acetic, propionic, and butyric acid) concentrations were not different between experimental groups. Thus, under the conditions applied, supplementation with a saccharin-based sweetener does not appear to affect animal performance under heat stress. Additionally, we detected differences in the rumen epithelial microbiota due to heat stress when comparing initial, prestressed microbial communities to the communities after heat stress. Importantly, the changes occurring in the rumen epithelial microbiota may have implications on barrier integrity, oxygen scavenging, and urease activity. This research adds insight into the impact of saccharin-based sweeteners on the rumen microbiota and the responsivity of the rumen epithelial microbiota to different stimuli, providing novel hypotheses for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838801PMC
http://dx.doi.org/10.1093/jas/skac403DOI Listing

Publication Analysis

Top Keywords

heat stress
24
rumen content
20
rumen epithelial
20
epithelial microbiota
20
rumen
14
content rumen
12
rumen epithelium
12
animal performance
12
saccharin-based sweetener
12
microbiota
9

Similar Publications

Zinc-based alloys are potential candidates for bioabsorbable metallic devices due to their application-appropriate corrosion rates and biocompatibility. However, strain softening and rate sensitivity in tensile testing remain as challenges for their use in load bearing applications. In this study, three different Zn-xCu-yMn-0.

View Article and Find Full Text PDF

Heat exposure in outdoor work environments poses risks to worker health and productivity. Engineering solutions like cool surfaces that increase surface albedo and reduce temperatures may help mitigate these impacts. We conducted detailed micrometeorological modeling to analyze surface characteristics and heat exposure for outdoor workers at San Francisco International Airport (SFO) under current conditions and three hypothetical albedo-increase scenarios.

View Article and Find Full Text PDF

Embryogenesis is remarkably robust to temperature variability, yet there is limited understanding of the homeostatic mechanisms that offset thermal effects during early development. Here, we measured the thermal acclimation response of upper thermal limits and profiled chromatin state and the transcriptome of embryos (Bownes Stage 11) using single-nuclei multiome ATAC and RNA sequencing. We report that thermal acclimation, while preserving a common set of primordial cell types, rapidly shifted the upper thermal limit.

View Article and Find Full Text PDF

is an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends.

View Article and Find Full Text PDF

Background And Aim: Buffalo is the principal dairy animal and plays a major role in the economic growth of the dairy industry, contributing nearly 50% of the country's milk production. The Buffalo core body temperature is typically 38.5°C, but it can rise to 41.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!