Characterized by strong acidity, chelating ability, and reducing ability, oxalic acid, a low molecular weight dicarboxylic organic acid, plays important roles in the regulation of plant growth and development, the response to both biotic and abiotic stresses such as plant defense and heavy metals detoxification, and food quality. The metabolism of oxalic acid has been well-studied in microorganisms, fungi, and animals but remains less understood in plants. However, excessive accumulation of oxalic acid is detrimental to plants. Therefore, the level of oxalic acid has to be precisely controlled in plant tissues. In this review, we summarize the metabolism, function, and regulation of oxalic acid in plants, and we discuss solutions such as agricultural practices and plant biotechnology to manipulate oxalic acid metabolism to regulate plant responses to both external stimuli and internal developmental cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c04787 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!