DACH1 is an important component of the retinal determinate gene network (RDGN), which regulates the expression of target genes by directly binding or interacting with other factors. DACH1 shows inhibitory effects in most tumors, but its role in papillary thyroid carcinoma is unclear and warrants further investigation. We assessed the expression of DACH1 in different tissues and correlation with immune infiltration by The Cancer Genome Atlas (TCGA) and Tumor Immune Estimation Resource (TIMMER2.0 databases). The effects of DACH1 on the proliferation and migration of TPC-1 and Bcpap cells were assessed by cell viability assay, colony formation assay, wound healing assay, transwell migration assay, and flow cytometry. Finally, the effects of DACH1 on CXCL8, CXCL10, and CXCL12 expression in Nthy-ori-3-1, TPC-1 and Bcpap cells were assessed by enzyme-linked immunosorbent assay kit and real-time polymerase chain reaction, respectively. The results showed that DACH1 was differentially expressed in different tumors and tissues. Basal expression of DACH1 was lower in thyroid and papillary thyroid carcinoma than in other normal tissues and corresponding tumors, and positively correlated with CD8 T cell infiltration. In Nthy-ori-3-1, TPC-1 and Bcpap cells, overexpression of DACH1 inhibited cell migration and proliferation, and the opposite results was obtained by knocking down DACH1 using small interfering RNA. We also demonstrated that DACH1 regulated chemokines CXCL8, CXCL10, and CXCL12, thereby modulating tumor immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.11961 | DOI Listing |
Ann Diagn Pathol
January 2025
Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta 14320, Indonesia; Human Cancer Research Center-Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta 14320, Indonesia.
Papillary thyroid carcinoma (PTC) is the most prevalent thyroid neoplasm, classified into BRAF-like and RAS-like subtypes. Nuclear alterations serve as a diagnostic criterion of PTC and are fully manifested in BRAF-like. This single-center retrospective study aimed to assess the different presentation of nuclear features in 40 samples of BRAFV600E- and 40 samples of RAS-mutated PTCs using both bivariate and multivariate analytic approaches.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Vascular and Thyroid Surgery, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
Background: Papillary Thyroid Carcinoma (PTC) is the most common thyroid cancer, with an etiology and progression that are not fully understood. Research suggests a link between cathepsins and PTC, but the causal nature of this link is unclear. This study uses Mendelian Randomization (MR) to investigate if cathepsins causally influence PTC risk.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 950 Donghai Street, Fengze District, Quanzhou, 362000, Fujian, China.
The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
School of Economics and Management, Beijing Forestry University, Beijing 100083, China.
OTU domain-containing protein 3 (OTUD3) is a crucial deubiquitinase that exhibits significant expression differences across various disease models. OTUD3 plays a role in regulating biological functions such as apoptosis, inflammatory responses, cell cycle, proliferation, and invasion in different cell types. By deubiquitinating key substrate proteins, OTUD3 is involved in essential physiological and pathological processes, including innate antiviral immunity, neural development, neurodegenerative diseases, and cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!