A study of how solid-liquid interactions affect flow resistance and heat transfer at different temperatures based on molecular dynamics simulations.

Phys Chem Chem Phys

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China.

Published: December 2022

Non-equilibrium molecular dynamics simulations of liquid flow through the surface were performed to investigate the flow resistance and thermal resistance under conditions of different solid-liquid interactions and surface temperatures. A novel phenomenon was observed in the simulation, namely the rise of surface temperature increases the flow resistance when solid-liquid interaction is weak, but decreases the flow resistance when solid-liquid interaction is strong. A higher density of the boundary layer brings a larger friction force to increase the flow resistance. For heat transfer, it is innovative to calculate the heat conduction and convection of the boundary region discretely. The results showed that the heat transfer performance of the interface is not positively correlated with the boundary liquid density, and the structure of the boundary liquid is also crucial. We believe that this research can improve the existing theory of flow heat transfer and provide a more effective method for analyzing the flow heat transfer of the solid-liquid interface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp03905bDOI Listing

Publication Analysis

Top Keywords

flow resistance
20
heat transfer
20
solid-liquid interactions
8
flow
8
resistance heat
8
molecular dynamics
8
dynamics simulations
8
resistance solid-liquid
8
solid-liquid interaction
8
boundary liquid
8

Similar Publications

Blood Flow Restricted Resistance Exercise in Well-Trained Men: Salivary Biomarker Responses and Oxygen Saturation Kinetics.

J Strength Cond Res

December 2024

Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas.

Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men.

View Article and Find Full Text PDF

Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.

View Article and Find Full Text PDF

The purpose of the study was to compare heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) following high load resistance exercise (HLRE) and blood flow restriction exercise (BFRE) with a knee wrap (kBFRE) and pneumatic cuff (pBFRE). Eleven men (N = 9) and women (N = 2) participated. HR, SBP, and DBP were collected at Rest, immediately post exercise (IP), 10-, 30-, and 45-minutes post exercise.

View Article and Find Full Text PDF

Background: Atherosclerotic renal artery stenosis (ARAS) may provoke hypertension and/or impaired kidney function. Some patients develop uncontrolled hypertension and deteriorating kidney function despite optimal medical therapy. In these patients, endovascular treatment is an important therapeutic option.

View Article and Find Full Text PDF

Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!