Chemotherapy extravasation from a Chemo port.

J Cancer Res Ther

Department of Radiation Oncology, Government Medical College and Hospital, Chandigarh, India.

Published: December 2022

Download full-text PDF

Source
http://dx.doi.org/10.4103/jcrt.jcrt_1114_21DOI Listing

Publication Analysis

Top Keywords

chemotherapy extravasation
4
extravasation chemo
4
chemo port
4
chemotherapy
1
chemo
1
port
1

Similar Publications

Transient receptor potential vanilloid 4 gene-deficiency attenuates the inhibitory effect of 5,6-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid on vascular permeability in mice.

J Pharmacol Sci

January 2025

Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan. Electronic address:

We investigated whether an anti-inflammatory lipid metabolite named 5,6-DiHETE reduces vascular permeability by inhibiting TRPV4 channels in vivo. In wild-type (WT) mice, histamine-induced dye extravasation was reduced by pre-administration of 5,6-DiHETE. In TRPV4-deficient mice, extravasation and histamine-induced edema were already reduced, and 5,6-DiHETE had no additional effect.

View Article and Find Full Text PDF

MDSC: a new potential breakthrough in CAR-T therapy for solid tumors.

Cell Commun Signal

December 2024

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Chimeric antigen receptor T (CAR-T) cell therapy has shown remarkable success in hematologic malignancies but has encountered challenges in effectively treating solid tumors. One major obstacle is the presence of the immunosuppressive tumor microenvironment (TME), which is mainly built by myeloid-derived suppressor cells (MDSCs). Recent studies have shown that MDSCs have a detrimental effect on CAR-T cells due to their potent immunosuppressive capabilities.

View Article and Find Full Text PDF

Melanomas, which develop on malignant transformations of melanocytes, are highly malignant and prone to metastasis; therefore, effective drugs are required. The (MC) extract has been shown to suppress cancer cell proliferation and invasion; however, the effect of the MC extract on melanoma in living organisms remains unclear. In this study, we investigated the mechanism underlying the amelioration of melanoma cell extravasation into mouse lungs by the MC extract.

View Article and Find Full Text PDF

Application value of high-pressure-resistant peripherally inserted central catheters in enhanced computer tomography of diabetic patients with malignant tumors.

World J Diabetes

December 2024

Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College (Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging), Nanchang University, Nanchang 330006, Jiangxi Province, China.

Background: Individuals with diabetes mellitus have a higher risk of developing malignant tumors, and diagnosing these tumors can be challenging.

Aim: To confirm the benefits of using peripherally inserted central catheters (PICCs) in contrast-enhanced computerized tomography (CECT) for diagnostic imaging in diabetic patients with malignant tumors and to provide a research basis for follow-up research.

Methods: This retrospective study analyzed 204 diabetic patients with malignancies treated at The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, from January 2024 to June 2024.

View Article and Find Full Text PDF

Combined therapies in cancer treatment aim to enhance antitumor activity. However, delivering multiple small molecules imposes challenges, as different drugs have distinct pharmacokinetic profiles and tumor penetration abilities, affecting their therapeutic efficacy. To circumvent this, poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-based nanoparticles were developed as a platform for the codelivery of synergistic drug ratios, improving therapeutic efficacy by increasing the percentage of injected dose reaching the tumor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!