Background: Mechanical harvesting with over-the-row harvesters in super-high-density (SHD) table olive orchards increases the effectiveness of fruit removal, although bruising can limit the fruit quality. Additionally, an early harvest in periods less favourable to quality production is increasingly frequent as a result of global warming. The present study explores the impact on olive quality of harvesting at dawn when the environmental temperature is low. The study was carried out for 2 years on two cultivars with different tolerance to bruising ('Manzanilla de Sevilla' and 'Manzanilla Cacereña'), grown in SHD conditions and harvested at two timepoints: dawn and morning.

Results: Fruit morphology was not modified by the moment of harvest in either of the cultivars. Fruit harvested at dawn produced less CO and ethylene and was less damaged externally and internally compared to fruit harvested in the morning. However, environmental conditions throughout development influenced the response because the highest values of bruising (incidence, area and volume of damaged area), total internal damage and the number of tissue ruptures increased in the year with the hottest summer, and the differences between harvest treatments were less evident.

Conclusion: Mechanical harvesting at dawn contributes to reducing the damage in olive fruit. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.12384DOI Listing

Publication Analysis

Top Keywords

mechanical harvesting
12
harvesting dawn
12
table olive
8
fruit harvested
8
fruit
6
dawn
5
dawn super-high-density
4
super-high-density table
4
olive
4
olive orchard
4

Similar Publications

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

This study introduced a novel approach to 3D image segmentation utilizing a neural network framework applied to 2D depth map imagery, with Z axis values visualized through color gradation. This research involved comprehensive data collection from mechanically harvested wild blueberries to populate 3D and red-green-blue (RGB) images of filled totes through time-of-flight and RGB cameras, respectively. Advanced neural network models from the YOLOv8 and Detectron2 frameworks were assessed for their segmentation capabilities.

View Article and Find Full Text PDF

Root-associated microbial diversity and metabolomics in maize resistance to stalk rot.

Front Microbiol

December 2024

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China.

As one of the three major food crops in the world, maize plays a significant role in alleviating the food crisis. Maize stalk rot can reduce maize yield and mechanical harvesting efficiency. In addition, mycotoxins such as Deoxynivalenol (DON) and Zearalenone (ZEN) produced by maize stalk rot pathogens can also harm livestock and human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!