AI Article Synopsis

  • Understanding the patterns of drug-gene interactions (DGIs) is crucial for integrating pharmacogenetics (PGx) into clinical practice, as few studies have confirmed these interactions in patients with specific genotypes and prescriptions.
  • A retrospective chart review found that 75% of patients were prescribed medications with PGx guidelines, with up to 60% having at least one DGI, mainly occurring in outpatient settings, and proton pump inhibitors being the most commonly involved medications.
  • The findings highlight the prevalence of multigene interactions, suggesting that panel PGx testing could be a valuable strategy for clinical implementation, as well as indicate key stakeholders for DGI prescribing workflows.

Article Abstract

Understanding patterns of drug-gene interactions (DGIs) is important for advancing the clinical implementation of pharmacogenetics (PGx) into routine practice. Prior studies have estimated the prevalence of DGIs, but few have confirmed DGIs in patients with known genotypes and prescriptions, nor have they evaluated clinician characteristics associated with DGI-prescribing. This retrospective chart review assessed prevalence of DGI, defined as a medication prescription in a patient with a PGx phenotype that has a clinical practice guideline recommendation to adjust therapy or monitor drug response, for patients enrolled in a research genetic biorepository linked to electronic health records (EHRs). The prevalence of prescriptions for medications with pharmacogenetic (PGx) guidelines, proportion of prescriptions with DGI, location of DGI prescription, and clinical service of the prescriber were evaluated descriptively. Seventy-five percent (57,058/75,337) of patients had a prescription for a medication with a PGx guideline. Up to 60% (n = 26,067/43,647) of patients had at least one DGI when considering recommendations to adjust or monitor therapy based on genotype. The majority (61%) of DGIs occurred in outpatient prescriptions. Proton pump inhibitors were the most common DGI medication for 11 of 12 clinical services. Almost 25% of patients (n = 10,706/43,647) had more than one unique DGI, and, among this group of patients, 61% had a DGI with more than one gene. These findings can inform future clinical implementation by identifying key stakeholders for initial DGI prescriptions, helping to inform workflows. The high prevalence of multigene interactions identified also support the use of panel PGx testing as an implementation strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926071PMC
http://dx.doi.org/10.1111/cts.13449DOI Listing

Publication Analysis

Top Keywords

drug-gene interactions
8
clinical implementation
8
dgi
8
patients
6
clinical
5
pgx
5
prescriptions
5
identifying prevalence
4
prevalence clinically
4
clinically actionable
4

Similar Publications

Motivation: The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph motifs of (disease, drug, gene) triplets. Among them, the triangle is a steady and important motif structure in the network, and other various motifs different from the triangle also indicate rich semantic relationships.

View Article and Find Full Text PDF

Graph Neural Networks-Based Prediction of Drug Gene Interactions of RTK-VEGF4 Receptor Family in Periodontal Regeneration.

J Clin Exp Dent

December 2024

DDS. Titular Professor. Universidad de Antioquia U de A, Medellín, Colombia. Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia.

Background: The RTK-VEGF4 receptor family, which includes VEGFR-1, VEGFR-2, and VEGFR-3, plays a crucial role in tissue regeneration by promoting angiogenesis, the formation of new blood vessels, and recruiting stem cells and immune cells. Machine learning, particularly graph neural networks (GNNs), has shown high accuracy in predicting these interactions. This study aims to predict drug-gene interactions of the RTK-VEGF4 receptor family in periodontal regeneration using graph neural networks.

View Article and Find Full Text PDF

CXCL12 is a potential therapeutic target for type 2 diabetes mellitus complicated by chronic obstructive pulmonary disease.

Nan Fang Yi Ke Da Xue Xue Bao

January 2025

Provincial School of Clinical Medicine, Fujian Medical University; Department of Respiratory and Critical Care Medicine, Fujian Provincial Hospital of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China.

Objectives: To identify the key genes and immunological pathways shared by type 2 diabetes mellitus (T2DM) and chronic obstructive pulmonary disease (COPD) and explore the potential therapeutic targets of T2DM complicated by COPD.

Methods: GEO database was used for analyzing the gene expression profiles in T2DM and COPD to identify the common differentially expressed genes (DEGs) in the two diseases. A protein-protein interaction network was constructed to identify the candidate hub genes, which were validated in datasets and disease sets to obtain the target genes.

View Article and Find Full Text PDF

Bioinformatic analysis of ferroptosis related biomarkers and potential therapeutic targets in vitiligo.

Sci Rep

January 2025

Department of Dermatology, Suining Central Hospital, No. 127, Western Desheng Road, Suining, 629000, People's Republic of China.

Vitiligo is a complex autoimmune skin disorder characterized by depigmentation and immune dysregulation. To elucidate the role of ferroptosis-related genes (FRGs) in vitiligo, we conducted a comprehensive analysis of gene expression data from the GSE53146 and GSE65127 datasets obtained from the GEO database. We identified 31 differentially expressed FRGs (DE-FRGs), with 21 genes upregulated and 10 downregulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!