With no prominent treatment for pancreatic ductal adenocarcinoma (PDAC) in conventional chemotherapy, recent studies have focused on uniting conventional and traditional medicines including plant phytoconstituents. Herein, we used pharmacoinformatic studies to identify potent phytoconstituent as ligand having inhibition activities against canonical anticancer targets, and evaluated its effect on PDAC cell lines. SwissTargetPrediction and SuperPred tools were utilized to segregate protein targets of ligand in humans, following which FunRich was applied to garner its targets in PDAC. STRING analysis predicted protein-protein interactions and dynamic simulation studies confirmed stability of ligand-protein complex. For cytotoxic potential, ligand treatment at different concentrations was given to PDAC cell lines both alone and combined with gemcitabine, followed by evaluation of effects on migration. Differential gene expression was checked using PCR for evaluating mechanism of cytotoxicity. Results showed pentagalloylglucose (PGG) with highest docking and MMGBSA scores for Cyclooxygenase 2 (Cox2) inhibition site. SwissTargetPrediction and SuperPred analysis detected 40 targets of PGG in PDAC. Simulation data showed stability of protein-ligand complex. In i experiments Mia-PaCa-2 was more sensitive to PGG than Panc-1. PGG successfully inhibited migration both alone and in combination with gemcitabine. Additionally, PGG treatment induced apoptosis in both the cell lines; but showed antagonism when combined with gemcitabine. In conclusion, our report demonstrates PGG has good binding with Cox2 and showed anti-PDAC activity by inhibiting migration and inducing apoptosis, thus it can be used as a therapy option. But further studies are required to confirm its behaviour as a combination therapy drug.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2022.2155701 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.
Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!