Spinal cord injury (SCI) is one of the most devastating injuries which causes either complete or partial loss of movement, balance, muscular coordination and endurance. Electromagnetic field (EMF) stimulation has been shown to reduce muscle atrophy and fiber-type switching and improves muscle function in a hindlimb suspension model. The present study aims to elucidate the therapeutic potential of EMF stimulation on motor neuron excitability, soleus muscle morphology and function in complete SCI rats. Thirty-six adult male Wistar rats were randomly divided into Sham, SCI and SCI+EMF groups. Complete transection was done at the T13 spinal level, followed by whole-body EMF exposure for 7 or 14 days. Hyper-reflexia, muscle atrophy, reduction in twitch and tetanic force with earlier onset of fatigue was evident in the SCI group. EMF stimulation showed significant improvement in H and M wave parameters, H/M ratio, muscle twitch and tetanic force, fusion frequency and fatigability. A significant increase in regenerating myofibers and reduction in muscle degeneration following EMF was evident on histopathological examination. Further, EMF significantly increased myogenic protein levels responsible for muscle regeneration. Our study demonstrates for the first time the potential of EMF to modulate motor neuron excitability and muscle contractile function in SCI rats through activity-dependent mechanisms.
Download full-text PDF |
Source |
---|
Exp Neurol
December 2024
Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98108, USA. Electronic address:
Swallowing, both nutritive and non-nutritive, is highly dysfunctional in children with Leigh Syndrome (LS) and contributes to the need for both gastrostomy and tracheostomy tube placement. Without these interventions aspiration of food, liquid, and mucus occur resulting in repeated bouts of respiratory infection. No study has investigated whether mouse models of LS, a neurometabolic disorder, exhibit dysfunctions in neuromuscular activity of swallow and breathing integration.
View Article and Find Full Text PDFSemin Respir Crit Care Med
December 2024
Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio.
Neuromuscular disorders can cause respiratory impairment by affecting the muscle fibers, neuromuscular junction, or innervation of respiratory muscles, leading to significant morbidity and mortality. Over the past few years, new disease-modifying therapies have been developed and made available for treating different neuromuscular disorders. Some of these therapies have remarkable effectiveness, resulting in the prevention and reduction of respiratory complications.
View Article and Find Full Text PDFInt J Sports Physiol Perform
December 2024
Department of Anesthesiology and Intensive Care, Akershus University Hospital, Lørenskog, Norway.
Purpose: Laboratory studies have demonstrated that manual dexterity decreases with increasing cold, which may adversely affect performance. Dexterity may be impaired by cooling of the hand, cooling of the lower motor neurons, and cognitive impairment. Wetsuits are commonly used in open-water swimming and are mandated in some situations.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia.
The process of mRNA localization in the cytoplasm involves the directed transport of mRNP particles using the microtubule system. This transport is mediated and regulated by specific factors-adaptors between mRNA molecules and microtubule motor proteins. Adaptors are a key link in the mechanism of mRNA transport, but to date their identity and functioning are mostly unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!