Expression of affinity-tagged recombinant proteins for crystallography, protein-protein interaction, antibody generation, therapeutic applications, etc. mandates the generation of high-yield soluble proteins. Although recent developments suggest the use of yeast, insect, and mammalian cell lines as protein expression platforms, Escherichia coli is still the most popular, due mainly to its ease of growth, feasibility in genetic manipulation and economy. However, some proteins have a spontaneous tendency to form inclusion bodies (IBs) when over-expressed in bacterial expression systems such as E. coli, thus posing a challenge in purification and yield. At times, small peptides undergo degradation during protein production and hence using suitable tags could circumvent the problem. Although several independent techniques have been used to solubilize IBs, these cannot always be applied in a generic sense. Although tagging a GST moiety is known to enhance the solubility of fusion proteins in E. coli, resulting in yields of 10-50 mg/L of the culture, the inherent nature of the protein sequence at times could lead to the formation of IBs. We have been working on a Myc Binding Protein-1 orthologue, viz. Flagellar Associated Protein 174 (FAP174) from the axoneme of Chlamydomonas reinhardtii that binds to an A-Kinase Anchoring Protein 240 (AKAP240) which has been annotated as Flagellar Associated Protein 65 (FAP65). Using an in-silico approach, we have identified two amphipathic helices on FAP65 (CrFAP65AH1 and CrFAP65AH2) that are predicted to bind to FAP174. To test this prediction, we have cloned the GST-tagged peptides, and overexpressed them in E. coli that have resulted in insoluble IBs. The yields of these over-expressed recombinant proteins dropped considerably due to IB formation, indicating aggregation. An integrated approach has been used to solubilize four highly hydrophobic polypeptides, viz. two amphipathic helices and the respective proline variants of FAP65. For solubilizing these polypeptides, variables such as non-denaturing detergents (IGEPAL CA-630), changing the ionic strength of the cell lysis and solubilization buffer, addition of BugBuster, diluting the cell lysate and sonication were introduced. Our statistically viable results yielded highly soluble and functional polypeptides, indiscreet secondary structures, and a yield of ~ 20 mg/L of the E. coli culture. Our combinatorial strategy using chemical and physical methods to solubilize IBs could prove useful for hydrophobic peptides and proteins with amphipathic helices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746132PMC
http://dx.doi.org/10.1186/s12934-022-01979-yDOI Listing

Publication Analysis

Top Keywords

amphipathic helices
12
inclusion bodies
8
recombinant proteins
8
solubilize ibs
8
flagellar associated
8
associated protein
8
proteins
7
coli
6
protein
6
ibs
5

Similar Publications

Unlabelled: Cytoplasmic proteins must recruit to membranes to function in processes such as endocytosis and cell division. Many of these proteins recognize not only the chemical structure of the membrane lipids, but the curvature of the surface, binding more strongly to more highly curved surfaces, or 'curvature sensing'. Curvature sensing by amphipathic helices is known to vary with membrane bending rigidity, but changes to lipid composition can simultaneously alter membrane thickness, spontaneous curvature, and leaflet symmetry, thus far preventing a systematic characterization of lipid composition on such curvature sensing through either experiment or simulation.

View Article and Find Full Text PDF

The role of amphipathic and cationic helical peptides in Parkinson's disease.

Protein Sci

January 2025

Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.

Peptides are attracting a growing interest for therapeutic applications in biomedicine. In Parkinson's disease (PD), different human endogenous peptides have been associated with beneficial effects, including protein aggregation inhibition, reduced inflammation, or the protection of dopaminergic neurons. Such effects seem to be connected to the spatial arrangement of peptide side chains, and many of these human molecules share common conformational traits, displaying a distinctive amphipathic and cationic helical structure, which is believed to be crucial for their activities.

View Article and Find Full Text PDF

Adaptor protein complex-3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 adopts a constitutively open conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question.

View Article and Find Full Text PDF

Atomistic Simulations and Analysis of Peripheral Membrane Proteins with Model Lipid Bilayers.

Methods Mol Biol

December 2024

Chemical and Biological Engineering Department, School of Engineering and Applied Sciences, State University of New York at Buffalo, Buffalo, NY, USA.

All-atom molecular dynamics (AAMD) is a computational technique that predicts the movement of particles based on the intermolecular forces acting on the system. It enables the study of biological systems at atomic detail, complements observations from experiments, and can help the selection of experimental targets. Here, we describe the applications of MD simulations to study the interaction between peripheral membrane proteins and lipid bilayers.

View Article and Find Full Text PDF

The class B scavenger receptor CD36 is known to bind and mediate the transport of lipid-related ligands and it functions as a pattern recognition receptor (PRR) for a variety of pathogens, including bacteria and viruses. In this study, we assessed CD36's role as a PRR mediating pro-inflammatory effects of several known Danger-Associated Molecular Patterns (DAMPs) used either as a single preparation or as a combination of DAMPs in the form of total cell/skeletal muscle tissue lysates. Our data demonstrated that multiple DAMPs, including HMGB1, HSPs, histone H3, SAA, and oxPAPC, as well as cell/tissue lysate preparations, induced substantially higher (~7-10-fold) IL-8 cytokine responses in HEK293 cells overexpressing CD36 compared to control WT cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!