Background: Human brucellosis is a serious public health concern in China. The objective of this study is to develop a suitable model for forecasting human brucellosis cases in mainland China.
Methods: Data on monthly human brucellosis cases from January 2012 to December 2021 in 31 provinces and municipalities in mainland China were obtained from the National Health Commission of the People's Republic of China website. The TBATS and ELM models were constructed. The MAE, MSE, MAPE, and RMSE were calculated to evaluate the prediction performance of the two models.
Results: The optimal TBATS model was TBATS (1, {0,0}, -, {< 12,4 >}) and the lowest AIC value was 1854.703. In the optimal TBATS model, {0,0} represents the ARIMA (0,0) model, {< 12,4 >} are the parameters of the seasonal periods and the corresponding number of Fourier terms, respectively, and the parameters of the Box-Cox transformation ω are 1. The optimal ELM model hidden layer number was 33 and the R-squared value was 0.89. The ELM model provided lower values of MAE, MSE, MAPE, and RMSE for both the fitting and forecasting performance.
Conclusions: The results suggest that the forecasting performance of ELM model outperforms the TBATS model in predicting human brucellosis between January 2012 and December 2021 in mainland China. Forecasts of the ELM model can help provide early warnings and more effective prevention and control measures for human brucellosis in mainland China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746081 | PMC |
http://dx.doi.org/10.1186/s12879-022-07919-w | DOI Listing |
BMC Microbiol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Human brucellosis is a re-emerging disease in Sichuan Province, China. In this study, bacteriology, conventional bio-typing, multi-locus sequence typing (MLST), and multiple locus variable-number tandem repeat analysis (MLVA) were applied to preliminarily characterize the strains in terms of genetic diversity and epidemiological links. A total of 101 Brucella strains were isolated from 16 cities (autonomous prefectures) from 2014 to 2021, and all of the strains were identified as Brucella melitensis bv.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Organization (AREEO), Karaj, Iran.
Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.
View Article and Find Full Text PDFActa Trop
January 2025
Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
Introduction: Brucellosis is still a significant emerging threat to public health, as it can infect humans, wild, domestic animals, and livestock. Hence, the current study aims to determine the frequency of canine brucellosis (CB), its relationship with clinical findings and reproductive disorders in kennel and farm dogs, and its importance on public health.
Materials And Methods: From January 2022 to December 2023, a total of 150 blood samples were taken from 100 adult dogs in breeding kennels and 50 shepherd dogs in breeding farms in Kerman, Iran.
Vet Med Sci
January 2025
Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.
Background: Brucellosis is a zoonotic disease caused by Brucella spp., affecting various animals and humans, leading to significant economic and public health impacts. Traditional diagnostic methods, mainly serological, often fail to detect seronegative carriers, which continue to spread the infection.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute (RVSRI), Karaj, Iran.
Brucellosis, a zoonotic disease caused by Brucella spp. globally, is of great significance not only to livestock but also to public health. The most significant of the twelve species is Brucella melitensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!