Corona poling effects on optical and structural characteristics of zinc oxide (ZnO) thin films prepared by sol-gel spin coating technique were investigated. Atomic force microscope study showed the formation of pyramidal grains structure on the Corona-treated surface. The green-yellow photoluminescence peak centered at 2.36 eV and correlated to the antisite oxygen O defect, was found to decrease. X-ray diffraction patterns demonstrated that the Corona treatment enhanced the polycrystalline nature and increased the grain sizes of the ZnO thin films, which was also beneficial for electron transport. The role of the surface roughness of the ZnO thin film as electron transport layer in determining the photovoltaic effect of the inverted solar cells (ISCs) was examined by fabricating ISCs based on P3HT/PCBM. The power conversion efficiency (PCE) obtained from these fabricated ISCs increased from 3.05 to 3.34%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744748 | PMC |
http://dx.doi.org/10.1038/s41598-022-25984-8 | DOI Listing |
Dalton Trans
January 2025
Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam.
Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.
View Article and Find Full Text PDFACS Appl Electron Mater
January 2025
Electrical Engineering Division, Engineering Department, University of Cambridge, Cambridge CB3 0FA, U.K.
Nanoscale semiconductors offer significant advantages over their bulk semiconductor equivalents for electronic devices as a result of the ability to geometrically tune electronic properties, the absence of internal grain boundaries, and the very low absolute number of defects that are present in such small volumes of material. However, these advantages can only be realized if reliable contacts can be made to the nanoscale semiconductor using a scalable, low-cost process. Although there are many low-cost "bottom-up" techniques for directly growing nanomaterials, the fabrication of contacts at the nanoscale usually requires expensive and slow techniques like e-beam lithography that are also hard to scale to a level of throughput that is required for commercialization.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, South Korea.
Zinc oxide (ZnO) thin-film transistors (TFTs) can be promising for applications in wide-band light absorption. However, they suffer from retarded photoresponse characteristics due to atomic defects and the resulting localized electronic states. To investigate the photoinduced localized states of the ZnO TFTs, here, we combine X-ray photoelectron spectroscopy, atomic force microscopy, and density functional theory (DFT) calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Riphah International University, Campus Lahore, Lahore 54000, Pakistan.
To advance off-grid energy solutions, developing flexible photobatteries capable of direct light charging is essential. This study presents an innovative photobattery architecture that incorporates zinc oxide (ZnO) as an electron-transporting and hole-blocking layer, combined with a hybrid methylammonium tin iodide composite with poly-triarylamine (MASnI/PTAA) for light absorption and hole transport. PTAA facilitates efficient hole transport to the anode, thereby enhancing charge separation and reducing recombination losses.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China.
The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The devices' photoresponse to UV (365 nm) and visible (405 nm) lasers is thoroughly examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!