Purpose: Infrared (IR) spectroscopy has the potential for tumor delineation in neurosurgery. Previous research showed that IR spectra of brain tumors are generally characterized by reduced lipid-related and increased protein-related bands. Therefore, we propose the exploitation of these common spectral changes for brain tumor recognition.
Methods: Attenuated total reflection IR spectroscopy was performed on fresh specimens of 790 patients within minutes after resection. Using principal component analysis and linear discriminant analysis, a classification model was developed on a subset of glioblastoma (n = 135) and non-neoplastic brain (n = 27) specimens, and then applied to classify the IR spectra of several types of brain tumors.
Results: The model correctly classified 82% (517/628) of specimens as "tumor" or "non-tumor", respectively. While the sensitivity was limited for infiltrative glioma, this approach recognized GBM (86%), other types of primary brain tumors (92%) and brain metastases (92%) with high accuracy and all non-tumor samples were correctly identified.
Conclusion: The concept of differentiation of brain tumors from non-tumor brain based on a common spectroscopic tumor signature will accelerate clinical translation of infrared spectroscopy and related technologies. The surgeon could use a single instrument to detect a variety of brain tumor types intraoperatively in future clinical settings. Our data suggests that this would be associated with some risk of missing infiltrative regions or tumors, but not with the risk of removing non-tumor brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886632 | PMC |
http://dx.doi.org/10.1007/s11060-022-04204-3 | DOI Listing |
Theor Appl Genet
January 2025
Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France.
Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
: The study exploited, for the first time, Attenuated Total Reflectance-Fourier Transform-InfraRed (ATR-FTIR) spectroscopy on human dental pulps at different timings of root resorption (RR) to deepen the biological mechanisms occurring in deciduous teeth (De) during their replacement with permanent ones. : N:36 dental pulps from sound De were divided into the following: G0 (no RR); G1 (RR less than 1/3 of root length); G2 (RR not exceeding 2/3 of root length); and G3 (RR more than 2/3 of root length). Samples were analyzed by ATR-FTIR, and the spectral data were submitted to univariate (One-way ANOVA and Tukey's multiple comparison tests; statistical significance set at < 0.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, USA.
Human nails have recently become a sample of interest for toxicological purposes. Multiple studies have proven the ability to detect various analytes within the keratin matrix of the nail. The analyte of interest in this study is fentanyl, a highly dangerous and abused drug in recent decades.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!