A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reinforcement learning deficits exhibited by postnatal PCP-treated rats enable deep neural network classification. | LitMetric

The ability to appropriately update the value of a given action is a critical component of flexible decision making. Several psychiatric disorders, including schizophrenia, are associated with impairments in flexible decision making that can be evaluated using the probabilistic reversal learning (PRL) task. The PRL task has been reverse-translated for use in rodents. Disrupting glutamate neurotransmission during early postnatal neurodevelopment in rodents has induced behavioral, cognitive, and neuropathophysiological abnormalities relevant to schizophrenia. Here, we tested the hypothesis that using the NMDA receptor antagonist phencyclidine (PCP) to disrupt postnatal glutamatergic transmission in rats would lead to impaired decision making in the PRL. Consistent with this hypothesis, compared to controls the postnatal PCP-treated rats completed fewer reversals and exhibited disruptions in reward and punishment sensitivity (i.e., win-stay and lose-shift responding, respectively). Moreover, computational analysis of behavior revealed that postnatal PCP-treatment resulted in a pronounced impairment in the learning rate throughout PRL testing. Finally, a deep neural network (DNN) trained on the rodent behavior could accurately predict the treatment group of subjects. These data demonstrate that disrupting early postnatal glutamatergic neurotransmission impairs flexible decision making and provides evidence that DNNs can be trained on behavioral datasets to accurately predict the treatment group of new subjects, highlighting the potential for DNNs to aid in the diagnosis of schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354061PMC
http://dx.doi.org/10.1038/s41386-022-01514-yDOI Listing

Publication Analysis

Top Keywords

decision making
16
flexible decision
12
postnatal pcp-treated
8
pcp-treated rats
8
deep neural
8
neural network
8
prl task
8
early postnatal
8
postnatal glutamatergic
8
accurately predict
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!